@inproceedings{kalouli-etal-2019-gkr,
title = "{GKR}: Bridging the Gap between Symbolic/structural and Distributional Meaning Representations",
author = "Kalouli, Aikaterini-Lida and
Crouch, Richard and
de Paiva, Valeria",
editor = "Xue, Nianwen and
Croft, William and
Hajic, Jan and
Huang, Chu-Ren and
Oepen, Stephan and
Palmer, Martha and
Pustejovksy, James",
booktitle = "Proceedings of the First International Workshop on Designing Meaning Representations",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3305/",
doi = "10.18653/v1/W19-3305",
pages = "44--55",
abstract = "Three broad approaches have been attempted to combine distributional and structural/symbolic aspects to construct meaning representations: a) injecting linguistic features into distributional representations, b) injecting distributional features into symbolic representations or c) combining structural and distributional features in the final representation. This work focuses on an example of the third and less studied approach: it extends the Graphical Knowledge Representation (GKR) to include distributional features and proposes a division of semantic labour between the distributional and structural/symbolic features. We propose two extensions of GKR that clearly show this division and empirically test one of the proposals on an NLI dataset with hard compositional pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kalouli-etal-2019-gkr">
<titleInfo>
<title>GKR: Bridging the Gap between Symbolic/structural and Distributional Meaning Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aikaterini-Lida</namePart>
<namePart type="family">Kalouli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Crouch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valeria</namePart>
<namePart type="family">de Paiva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Designing Meaning Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Croft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovksy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Three broad approaches have been attempted to combine distributional and structural/symbolic aspects to construct meaning representations: a) injecting linguistic features into distributional representations, b) injecting distributional features into symbolic representations or c) combining structural and distributional features in the final representation. This work focuses on an example of the third and less studied approach: it extends the Graphical Knowledge Representation (GKR) to include distributional features and proposes a division of semantic labour between the distributional and structural/symbolic features. We propose two extensions of GKR that clearly show this division and empirically test one of the proposals on an NLI dataset with hard compositional pairs.</abstract>
<identifier type="citekey">kalouli-etal-2019-gkr</identifier>
<identifier type="doi">10.18653/v1/W19-3305</identifier>
<location>
<url>https://aclanthology.org/W19-3305/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>44</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GKR: Bridging the Gap between Symbolic/structural and Distributional Meaning Representations
%A Kalouli, Aikaterini-Lida
%A Crouch, Richard
%A de Paiva, Valeria
%Y Xue, Nianwen
%Y Croft, William
%Y Hajic, Jan
%Y Huang, Chu-Ren
%Y Oepen, Stephan
%Y Palmer, Martha
%Y Pustejovksy, James
%S Proceedings of the First International Workshop on Designing Meaning Representations
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F kalouli-etal-2019-gkr
%X Three broad approaches have been attempted to combine distributional and structural/symbolic aspects to construct meaning representations: a) injecting linguistic features into distributional representations, b) injecting distributional features into symbolic representations or c) combining structural and distributional features in the final representation. This work focuses on an example of the third and less studied approach: it extends the Graphical Knowledge Representation (GKR) to include distributional features and proposes a division of semantic labour between the distributional and structural/symbolic features. We propose two extensions of GKR that clearly show this division and empirically test one of the proposals on an NLI dataset with hard compositional pairs.
%R 10.18653/v1/W19-3305
%U https://aclanthology.org/W19-3305/
%U https://doi.org/10.18653/v1/W19-3305
%P 44-55
Markdown (Informal)
[GKR: Bridging the Gap between Symbolic/structural and Distributional Meaning Representations](https://aclanthology.org/W19-3305/) (Kalouli et al., DMR 2019)
ACL