@inproceedings{choi-etal-2019-meta,
title = "Meta-Semantic Representation for Early Detection of {A}lzheimer`s Disease",
author = "Choi, Jinho D. and
Li, Mengmei and
Goldstein, Felicia and
Hajjar, Ihab",
editor = "Xue, Nianwen and
Croft, William and
Hajic, Jan and
Huang, Chu-Ren and
Oepen, Stephan and
Palmer, Martha and
Pustejovksy, James",
booktitle = "Proceedings of the First International Workshop on Designing Meaning Representations",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3309/",
doi = "10.18653/v1/W19-3309",
pages = "82--91",
abstract = "This paper presents a new task-oriented meaning representation called meta-semantics, that is designed to detect patients with early symptoms of Alzheimer`s disease by analyzing their language beyond a syntactic or semantic level. Meta-semantic representation consists of three parts, entities, predicate argument structures, and discourse attributes, that derive rich knowledge graphs. For this study, 50 controls and 50 patients with mild cognitive impairment (MCI) are selected, and meta-semantic representation is annotated on their speeches transcribed in text. Inter-annotator agreement scores of 88{\%}, 82{\%}, and 89{\%} are achieved for the three types of annotation, respectively. Five analyses are made using this annotation, depicting clear distinctions between the control and MCI groups. Finally, a neural model is trained on features extracted from those analyses to classify MCI patients from normal controls, showing a high accuracy of 82{\%} that is very promising."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="choi-etal-2019-meta">
<titleInfo>
<title>Meta-Semantic Representation for Early Detection of Alzheimer‘s Disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jinho</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengmei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felicia</namePart>
<namePart type="family">Goldstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ihab</namePart>
<namePart type="family">Hajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Designing Meaning Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Croft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovksy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a new task-oriented meaning representation called meta-semantics, that is designed to detect patients with early symptoms of Alzheimer‘s disease by analyzing their language beyond a syntactic or semantic level. Meta-semantic representation consists of three parts, entities, predicate argument structures, and discourse attributes, that derive rich knowledge graphs. For this study, 50 controls and 50 patients with mild cognitive impairment (MCI) are selected, and meta-semantic representation is annotated on their speeches transcribed in text. Inter-annotator agreement scores of 88%, 82%, and 89% are achieved for the three types of annotation, respectively. Five analyses are made using this annotation, depicting clear distinctions between the control and MCI groups. Finally, a neural model is trained on features extracted from those analyses to classify MCI patients from normal controls, showing a high accuracy of 82% that is very promising.</abstract>
<identifier type="citekey">choi-etal-2019-meta</identifier>
<identifier type="doi">10.18653/v1/W19-3309</identifier>
<location>
<url>https://aclanthology.org/W19-3309/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>82</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Meta-Semantic Representation for Early Detection of Alzheimer‘s Disease
%A Choi, Jinho D.
%A Li, Mengmei
%A Goldstein, Felicia
%A Hajjar, Ihab
%Y Xue, Nianwen
%Y Croft, William
%Y Hajic, Jan
%Y Huang, Chu-Ren
%Y Oepen, Stephan
%Y Palmer, Martha
%Y Pustejovksy, James
%S Proceedings of the First International Workshop on Designing Meaning Representations
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F choi-etal-2019-meta
%X This paper presents a new task-oriented meaning representation called meta-semantics, that is designed to detect patients with early symptoms of Alzheimer‘s disease by analyzing their language beyond a syntactic or semantic level. Meta-semantic representation consists of three parts, entities, predicate argument structures, and discourse attributes, that derive rich knowledge graphs. For this study, 50 controls and 50 patients with mild cognitive impairment (MCI) are selected, and meta-semantic representation is annotated on their speeches transcribed in text. Inter-annotator agreement scores of 88%, 82%, and 89% are achieved for the three types of annotation, respectively. Five analyses are made using this annotation, depicting clear distinctions between the control and MCI groups. Finally, a neural model is trained on features extracted from those analyses to classify MCI patients from normal controls, showing a high accuracy of 82% that is very promising.
%R 10.18653/v1/W19-3309
%U https://aclanthology.org/W19-3309/
%U https://doi.org/10.18653/v1/W19-3309
%P 82-91
Markdown (Informal)
[Meta-Semantic Representation for Early Detection of Alzheimer’s Disease](https://aclanthology.org/W19-3309/) (Choi et al., DMR 2019)
ACL