@inproceedings{ammanabrolu-etal-2019-guided,
    title = "Guided Neural Language Generation for Automated Storytelling",
    author = "Ammanabrolu, Prithviraj  and
      Tien, Ethan  and
      Cheung, Wesley  and
      Luo, Zhaochen  and
      Ma, William  and
      Martin, Lara J.  and
      Riedl, Mark o.",
    editor = "Ferraro, Francis  and
      Huang, Ting-Hao {`}Kenneth{'}  and
      Lukin, Stephanie M.  and
      Mitchell, Margaret",
    booktitle = "Proceedings of the Second Workshop on Storytelling",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-3405/",
    doi = "10.18653/v1/W19-3405",
    pages = "46--55",
    abstract = "Neural network based approaches to automated story plot generation attempt to learn how to generate novel plots from a corpus of natural language plot summaries. Prior work has shown that a semantic abstraction of sentences called events improves neural plot generation and and allows one to decompose the problem into: (1) the generation of a sequence of events (event-to-event) and (2) the transformation of these events into natural language sentences (event-to-sentence). However, typical neural language generation approaches to event-to-sentence can ignore the event details and produce grammatically-correct but semantically-unrelated sentences. We present an ensemble-based model that generates natural language guided by events. Our method outperforms the baseline sequence-to-sequence model. Additionally, we provide results for a full end-to-end automated story generation system, demonstrating how our model works with existing systems designed for the event-to-event problem."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ammanabrolu-etal-2019-guided">
    <titleInfo>
        <title>Guided Neural Language Generation for Automated Storytelling</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Prithviraj</namePart>
        <namePart type="family">Ammanabrolu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ethan</namePart>
        <namePart type="family">Tien</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wesley</namePart>
        <namePart type="family">Cheung</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhaochen</namePart>
        <namePart type="family">Luo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">William</namePart>
        <namePart type="family">Ma</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lara</namePart>
        <namePart type="given">J</namePart>
        <namePart type="family">Martin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mark</namePart>
        <namePart type="given">o</namePart>
        <namePart type="family">Riedl</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Second Workshop on Storytelling</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Francis</namePart>
            <namePart type="family">Ferraro</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ting-Hao</namePart>
            <namePart type="given">‘Kenneth’</namePart>
            <namePart type="family">Huang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Stephanie</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Lukin</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Margaret</namePart>
            <namePart type="family">Mitchell</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Neural network based approaches to automated story plot generation attempt to learn how to generate novel plots from a corpus of natural language plot summaries. Prior work has shown that a semantic abstraction of sentences called events improves neural plot generation and and allows one to decompose the problem into: (1) the generation of a sequence of events (event-to-event) and (2) the transformation of these events into natural language sentences (event-to-sentence). However, typical neural language generation approaches to event-to-sentence can ignore the event details and produce grammatically-correct but semantically-unrelated sentences. We present an ensemble-based model that generates natural language guided by events. Our method outperforms the baseline sequence-to-sequence model. Additionally, we provide results for a full end-to-end automated story generation system, demonstrating how our model works with existing systems designed for the event-to-event problem.</abstract>
    <identifier type="citekey">ammanabrolu-etal-2019-guided</identifier>
    <identifier type="doi">10.18653/v1/W19-3405</identifier>
    <location>
        <url>https://aclanthology.org/W19-3405/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>46</start>
            <end>55</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Guided Neural Language Generation for Automated Storytelling
%A Ammanabrolu, Prithviraj
%A Tien, Ethan
%A Cheung, Wesley
%A Luo, Zhaochen
%A Ma, William
%A Martin, Lara J.
%A Riedl, Mark o.
%Y Ferraro, Francis
%Y Huang, Ting-Hao ‘Kenneth’
%Y Lukin, Stephanie M.
%Y Mitchell, Margaret
%S Proceedings of the Second Workshop on Storytelling
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F ammanabrolu-etal-2019-guided
%X Neural network based approaches to automated story plot generation attempt to learn how to generate novel plots from a corpus of natural language plot summaries. Prior work has shown that a semantic abstraction of sentences called events improves neural plot generation and and allows one to decompose the problem into: (1) the generation of a sequence of events (event-to-event) and (2) the transformation of these events into natural language sentences (event-to-sentence). However, typical neural language generation approaches to event-to-sentence can ignore the event details and produce grammatically-correct but semantically-unrelated sentences. We present an ensemble-based model that generates natural language guided by events. Our method outperforms the baseline sequence-to-sequence model. Additionally, we provide results for a full end-to-end automated story generation system, demonstrating how our model works with existing systems designed for the event-to-event problem.
%R 10.18653/v1/W19-3405
%U https://aclanthology.org/W19-3405/
%U https://doi.org/10.18653/v1/W19-3405
%P 46-55
Markdown (Informal)
[Guided Neural Language Generation for Automated Storytelling](https://aclanthology.org/W19-3405/) (Ammanabrolu et al., Story-NLP 2019)
ACL
- Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, Zhaochen Luo, William Ma, Lara J. Martin, and Mark o. Riedl. 2019. Guided Neural Language Generation for Automated Storytelling. In Proceedings of the Second Workshop on Storytelling, pages 46–55, Florence, Italy. Association for Computational Linguistics.