@inproceedings{joksimovic-etal-2019-automated,
title = "Automated Identification of Verbally Abusive Behaviors in Online Discussions",
author = "Joksimovic, Srecko and
Baker, Ryan S. and
Ocumpaugh, Jaclyn and
Andres, Juan Miguel L. and
Tot, Ivan and
Wang, Elle Yuan and
Dawson, Shane",
editor = "Roberts, Sarah T. and
Tetreault, Joel and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the Third Workshop on Abusive Language Online",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3505",
doi = "10.18653/v1/W19-3505",
pages = "36--45",
abstract = "Discussion forum participation represents one of the crucial factors for learning and often the only way of supporting social interactions in online settings. However, as much as sharing new ideas or asking thoughtful questions contributes learning, verbally abusive behaviors, such as expressing negative emotions in online discussions, could have disproportionate detrimental effects. To provide means for mitigating the potential negative effects on course participation and learning, we developed an automated classifier for identifying communication that show linguistic patterns associated with hostility in online forums. In so doing, we employ several well-established automated text analysis tools and build on the common practices for handling highly imbalanced datasets and reducing the sensitivity to overfitting. Although still in its infancy, our approach shows promising results (ROC AUC .73) towards establishing a robust detector of abusive behaviors. We further provide an overview of the classification (linguistic and contextual) features most indicative of online aggression.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="joksimovic-etal-2019-automated">
<titleInfo>
<title>Automated Identification of Verbally Abusive Behaviors in Online Discussions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Srecko</namePart>
<namePart type="family">Joksimovic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Baker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaclyn</namePart>
<namePart type="family">Ocumpaugh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Miguel</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Andres</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Tot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elle</namePart>
<namePart type="given">Yuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shane</namePart>
<namePart type="family">Dawson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Abusive Language Online</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Discussion forum participation represents one of the crucial factors for learning and often the only way of supporting social interactions in online settings. However, as much as sharing new ideas or asking thoughtful questions contributes learning, verbally abusive behaviors, such as expressing negative emotions in online discussions, could have disproportionate detrimental effects. To provide means for mitigating the potential negative effects on course participation and learning, we developed an automated classifier for identifying communication that show linguistic patterns associated with hostility in online forums. In so doing, we employ several well-established automated text analysis tools and build on the common practices for handling highly imbalanced datasets and reducing the sensitivity to overfitting. Although still in its infancy, our approach shows promising results (ROC AUC .73) towards establishing a robust detector of abusive behaviors. We further provide an overview of the classification (linguistic and contextual) features most indicative of online aggression.</abstract>
<identifier type="citekey">joksimovic-etal-2019-automated</identifier>
<identifier type="doi">10.18653/v1/W19-3505</identifier>
<location>
<url>https://aclanthology.org/W19-3505</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>36</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Identification of Verbally Abusive Behaviors in Online Discussions
%A Joksimovic, Srecko
%A Baker, Ryan S.
%A Ocumpaugh, Jaclyn
%A Andres, Juan Miguel L.
%A Tot, Ivan
%A Wang, Elle Yuan
%A Dawson, Shane
%Y Roberts, Sarah T.
%Y Tetreault, Joel
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the Third Workshop on Abusive Language Online
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F joksimovic-etal-2019-automated
%X Discussion forum participation represents one of the crucial factors for learning and often the only way of supporting social interactions in online settings. However, as much as sharing new ideas or asking thoughtful questions contributes learning, verbally abusive behaviors, such as expressing negative emotions in online discussions, could have disproportionate detrimental effects. To provide means for mitigating the potential negative effects on course participation and learning, we developed an automated classifier for identifying communication that show linguistic patterns associated with hostility in online forums. In so doing, we employ several well-established automated text analysis tools and build on the common practices for handling highly imbalanced datasets and reducing the sensitivity to overfitting. Although still in its infancy, our approach shows promising results (ROC AUC .73) towards establishing a robust detector of abusive behaviors. We further provide an overview of the classification (linguistic and contextual) features most indicative of online aggression.
%R 10.18653/v1/W19-3505
%U https://aclanthology.org/W19-3505
%U https://doi.org/10.18653/v1/W19-3505
%P 36-45
Markdown (Informal)
[Automated Identification of Verbally Abusive Behaviors in Online Discussions](https://aclanthology.org/W19-3505) (Joksimovic et al., ALW 2019)
ACL