








Figure 3: Interface view for network exploration

annotated for hate speech. More precisely, 1,924
are annotated as containing racism, 3,082 as con-
taining sexism, while 10,884 tweets are annotated
as not containing offensive language. We merge
the sexist and racist tweets in a single class, so that
5,006 tweets are considered as positive instances
of hate speech. As a test set, we manually anno-
tate 900 Instagram comments, randomly extracted
from the Manchester network, labeling them as
hate speech or not. Overall, the test set contains
787 non-offensive and 113 offensive messages.

We preprocess both data sets, given that hash-
tags, user mentions, links to external media and
emojis are common in social media interactions.
To normalize the text as much as possible while re-
taining all relevant semantic information, we first
replace URLs with the word “url” and “@” user
mentions with “username” by using regular ex-
pressions. We also use the Ekphrasis tool (Bazi-
otis et al., 2017) to split hashtags into sequences
of words, when possible.

The system obtained on the test set a micro-
averaged F1 of 0:823 We then run the classifier
on all messages extracted for the Manchester net-
work, and make the output available through the
platform interface.

5 Interface

The system? relies on a relational database and
a tomcat application server. The interface is
based on existing javascript libraries such as C3.js
(https://c3js.org) and Sigma.js (http:

2A video of the demo is available at https:

//dh.fbk.eu/sites/dh.fbk.eu/files/
creepdemo_1.mé4v

Figure 4: Interface view for hate speech monitoring

//sigmajs.orqg).

The platform can be used with two settings:
in the first one (Figure 3), the Manchester net-
work is displayed, with colors denoting different
sub-communities characterised by dense connec-
tions. By clicking on a node, the platform displays
the cloud of key-concepts automatically extracted
from the conversations between the given user
and her connections using the KD tool (Moretti
et al., 2015). This view is useful to understand
the size and the density of the network and to
browse through the topics present in the threads.
In the second setting (Figure 4), which can be ac-
tivated by clicking on “Show offensive messages”,
the communities are all colored in grey, while the
system highlights in red the messages classified as
offensive by the system described in Section 3.
By clicking on red edges it is possible to view
the content of the messages classified as offensive,
enabling also to check the quality of the classi-
fier. This second view is meant to support educa-
tors and stakeholders in monitoring cyberbullying
without focusing on single users, but rather keep-
ing an eye on the whole network and zooming in
only when hateful exchanges, flagged in red, are
escalating.

6 Discussion

The current system has been designed to support
the work of educators in schools, although it is
not meant to be open to everyone but only to spe-
cific personnel. For example, in Italy there must
be one responsible teacher to counter cyberbully-
ing in every school, and access to the system could
be given only to that specific person. For the same
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reason, the system does not show the actual user-
names but only placeholders, and the possibility
to de-anonymise the network of users could be ac-
tivated only after cyberbullying phenomena have
been identified, and only for the users involved in
such cases. Indeed, we want to avoid the use of
this kind of platforms for the continuous surveil-
lance of students, and prevent a malicious use of
the monitoring platform.

The system relies on public user profiles, and
does not have access to content that users want
to keep private. This limits the number of cyber-
bullying cases and hate messages in our use case,
where detected abusive language concerns less
than 1% of the messages, while a previous study
on students’ simulated WhatsApp chats around
controversial topics reports that 41% of the col-
lected tokens were offensive or abusive (Sprugnoli
et al., 2018). This limitation is particularly rele-
vant when dealing with Instagram, but the work-
flow presented in this paper can be potentially ap-
plied to other social networks and chat applica-
tions. Another limitation of working with Insta-
gram is the fact that the monitoring cannot hap-
pen in real time. In fact, the steps to extract and
prune the network require some processing time
and cannot be performed on the fly, especially
in case of large user networks. We estimate that
the time needed to download the data, extract the
network, retrieve and classify the messages and
upload them in the visualisation tool would be
around one week.

7 Conclusion

In this paper, we presented a platform to monitor
cyberbullying phenomena that relies on two com-
ponents: an algorithm to automatically detect on-
line communities starting from geo-referenced on-
line pictures, and a hate speech classifier. Both
components have been combined in a single plat-
form that, through two different views, allows ed-
ucators to visualise the network of interest and
to detect in which sub-communities hate speech
is escalating. Although the evaluation has been
carried out only on English, the system supports
also Italian, and will be showcased in both lan-
guages. In the future, we plan to improve the clas-
sifier performance by extending the Twitter train-
ing set with more annotated data from Instagram.
We will also experiment with cross-lingual strate-
gies to train the classifier on English datasets and
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use it on other languages.
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