@inproceedings{karan-snajder-2019-preemptive,
title = "Preemptive Toxic Language Detection in {W}ikipedia Comments Using Thread-Level Context",
author = "Karan, Vanja Mladen and
{\v{S}}najder, Jan",
editor = "Roberts, Sarah T. and
Tetreault, Joel and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the Third Workshop on Abusive Language Online",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3514/",
doi = "10.18653/v1/W19-3514",
pages = "129--134",
abstract = "We address the task of automatically detecting toxic content in user generated texts. We fo cus on exploring the potential for preemptive moderation, i.e., predicting whether a particular conversation thread will, in the future, incite a toxic comment. Moreover, we perform preliminary investigation of whether a model that jointly considers all comments in a conversation thread outperforms a model that considers only individual comments. Using an existing dataset of conversations among Wikipedia contributors as a starting point, we compile a new large-scale dataset for this task consisting of labeled comments and comments from their conversation threads."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karan-snajder-2019-preemptive">
<titleInfo>
<title>Preemptive Toxic Language Detection in Wikipedia Comments Using Thread-Level Context</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vanja</namePart>
<namePart type="given">Mladen</namePart>
<namePart type="family">Karan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Abusive Language Online</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the task of automatically detecting toxic content in user generated texts. We fo cus on exploring the potential for preemptive moderation, i.e., predicting whether a particular conversation thread will, in the future, incite a toxic comment. Moreover, we perform preliminary investigation of whether a model that jointly considers all comments in a conversation thread outperforms a model that considers only individual comments. Using an existing dataset of conversations among Wikipedia contributors as a starting point, we compile a new large-scale dataset for this task consisting of labeled comments and comments from their conversation threads.</abstract>
<identifier type="citekey">karan-snajder-2019-preemptive</identifier>
<identifier type="doi">10.18653/v1/W19-3514</identifier>
<location>
<url>https://aclanthology.org/W19-3514/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>129</start>
<end>134</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Preemptive Toxic Language Detection in Wikipedia Comments Using Thread-Level Context
%A Karan, Vanja Mladen
%A Šnajder, Jan
%Y Roberts, Sarah T.
%Y Tetreault, Joel
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the Third Workshop on Abusive Language Online
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F karan-snajder-2019-preemptive
%X We address the task of automatically detecting toxic content in user generated texts. We fo cus on exploring the potential for preemptive moderation, i.e., predicting whether a particular conversation thread will, in the future, incite a toxic comment. Moreover, we perform preliminary investigation of whether a model that jointly considers all comments in a conversation thread outperforms a model that considers only individual comments. Using an existing dataset of conversations among Wikipedia contributors as a starting point, we compile a new large-scale dataset for this task consisting of labeled comments and comments from their conversation threads.
%R 10.18653/v1/W19-3514
%U https://aclanthology.org/W19-3514/
%U https://doi.org/10.18653/v1/W19-3514
%P 129-134
Markdown (Informal)
[Preemptive Toxic Language Detection in Wikipedia Comments Using Thread-Level Context](https://aclanthology.org/W19-3514/) (Karan & Šnajder, ALW 2019)
ACL