@inproceedings{bosnjak-karan-2019-data,
title = "Data Set for Stance and Sentiment Analysis from User Comments on {C}roatian News",
author = "Bo{\v{s}}njak, Mihaela and
Karan, Vanja Mladen",
editor = "Erjavec, Toma{\v{z}} and
Marci{\'n}czuk, Micha{\l} and
Nakov, Preslav and
Piskorski, Jakub and
Pivovarova, Lidia and
{\v{S}}najder, Jan and
Steinberger, Josef and
Yangarber, Roman",
booktitle = "Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3707/",
doi = "10.18653/v1/W19-3707",
pages = "50--55",
abstract = "Nowadays it is becoming more important than ever to find new ways of extracting useful information from the evergrowing amount of user-generated data available online. In this paper, we describe the creation of a data set that contains news articles and corresponding comments from Croatian news outlet 24 sata. Our annotation scheme is specifically tailored for the task of detecting stances and sentiment from user comments as well as assessing if commentator claims are verifiable. Through this data, we hope to get a better understanding of the publics viewpoint on various events. In addition, we also explore the potential of applying supervised machine learning models toautomate annotation of more data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bosnjak-karan-2019-data">
<titleInfo>
<title>Data Set for Stance and Sentiment Analysis from User Comments on Croatian News</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mihaela</namePart>
<namePart type="family">Bošnjak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vanja</namePart>
<namePart type="given">Mladen</namePart>
<namePart type="family">Karan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomaž</namePart>
<namePart type="family">Erjavec</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michał</namePart>
<namePart type="family">Marcińczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Nowadays it is becoming more important than ever to find new ways of extracting useful information from the evergrowing amount of user-generated data available online. In this paper, we describe the creation of a data set that contains news articles and corresponding comments from Croatian news outlet 24 sata. Our annotation scheme is specifically tailored for the task of detecting stances and sentiment from user comments as well as assessing if commentator claims are verifiable. Through this data, we hope to get a better understanding of the publics viewpoint on various events. In addition, we also explore the potential of applying supervised machine learning models toautomate annotation of more data.</abstract>
<identifier type="citekey">bosnjak-karan-2019-data</identifier>
<identifier type="doi">10.18653/v1/W19-3707</identifier>
<location>
<url>https://aclanthology.org/W19-3707/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>50</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data Set for Stance and Sentiment Analysis from User Comments on Croatian News
%A Bošnjak, Mihaela
%A Karan, Vanja Mladen
%Y Erjavec, Tomaž
%Y Marcińczuk, Michał
%Y Nakov, Preslav
%Y Piskorski, Jakub
%Y Pivovarova, Lidia
%Y Šnajder, Jan
%Y Steinberger, Josef
%Y Yangarber, Roman
%S Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F bosnjak-karan-2019-data
%X Nowadays it is becoming more important than ever to find new ways of extracting useful information from the evergrowing amount of user-generated data available online. In this paper, we describe the creation of a data set that contains news articles and corresponding comments from Croatian news outlet 24 sata. Our annotation scheme is specifically tailored for the task of detecting stances and sentiment from user comments as well as assessing if commentator claims are verifiable. Through this data, we hope to get a better understanding of the publics viewpoint on various events. In addition, we also explore the potential of applying supervised machine learning models toautomate annotation of more data.
%R 10.18653/v1/W19-3707
%U https://aclanthology.org/W19-3707/
%U https://doi.org/10.18653/v1/W19-3707
%P 50-55
Markdown (Informal)
[Data Set for Stance and Sentiment Analysis from User Comments on Croatian News](https://aclanthology.org/W19-3707/) (Bošnjak & Karan, BSNLP 2019)
ACL