@inproceedings{mysore-etal-2019-materials,
title = "The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures",
author = "Mysore, Sheshera and
Jensen, Zachary and
Kim, Edward and
Huang, Kevin and
Chang, Haw-Shiuan and
Strubell, Emma and
Flanigan, Jeffrey and
McCallum, Andrew and
Olivetti, Elsa",
editor = "Friedrich, Annemarie and
Zeyrek, Deniz and
Hoek, Jet",
booktitle = "Proceedings of the 13th Linguistic Annotation Workshop",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4007/",
doi = "10.18653/v1/W19-4007",
pages = "56--64",
abstract = "Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mysore-etal-2019-materials">
<titleInfo>
<title>The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sheshera</namePart>
<namePart type="family">Mysore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zachary</namePart>
<namePart type="family">Jensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haw-Shiuan</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emma</namePart>
<namePart type="family">Strubell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Flanigan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elsa</namePart>
<namePart type="family">Olivetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Linguistic Annotation Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Annemarie</namePart>
<namePart type="family">Friedrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deniz</namePart>
<namePart type="family">Zeyrek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jet</namePart>
<namePart type="family">Hoek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.</abstract>
<identifier type="citekey">mysore-etal-2019-materials</identifier>
<identifier type="doi">10.18653/v1/W19-4007</identifier>
<location>
<url>https://aclanthology.org/W19-4007/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>56</start>
<end>64</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures
%A Mysore, Sheshera
%A Jensen, Zachary
%A Kim, Edward
%A Huang, Kevin
%A Chang, Haw-Shiuan
%A Strubell, Emma
%A Flanigan, Jeffrey
%A McCallum, Andrew
%A Olivetti, Elsa
%Y Friedrich, Annemarie
%Y Zeyrek, Deniz
%Y Hoek, Jet
%S Proceedings of the 13th Linguistic Annotation Workshop
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F mysore-etal-2019-materials
%X Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.
%R 10.18653/v1/W19-4007
%U https://aclanthology.org/W19-4007/
%U https://doi.org/10.18653/v1/W19-4007
%P 56-64
Markdown (Informal)
[The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures](https://aclanthology.org/W19-4007/) (Mysore et al., LAW 2019)
ACL
- Sheshera Mysore, Zachary Jensen, Edward Kim, Kevin Huang, Haw-Shiuan Chang, Emma Strubell, Jeffrey Flanigan, Andrew McCallum, and Elsa Olivetti. 2019. The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures. In Proceedings of the 13th Linguistic Annotation Workshop, pages 56–64, Florence, Italy. Association for Computational Linguistics.