@inproceedings{spala-etal-2019-deft,
title = "{DEFT}: A corpus for definition extraction in free- and semi-structured text",
author = "Spala, Sasha and
Miller, Nicholas A. and
Yang, Yiming and
Dernoncourt, Franck and
Dockhorn, Carl",
editor = "Friedrich, Annemarie and
Zeyrek, Deniz and
Hoek, Jet",
booktitle = "Proceedings of the 13th Linguistic Annotation Workshop",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4015",
doi = "10.18653/v1/W19-4015",
pages = "124--131",
abstract = "Definition extraction has been a popular topic in NLP research for well more than a decade, but has been historically limited to well-defined, structured, and narrow conditions. In reality, natural language is messy, and messy data requires both complex solutions and data that reflects that reality. In this paper, we present a robust English corpus and annotation schema that allows us to explore the less straightforward examples of term-definition structures in free and semi-structured text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="spala-etal-2019-deft">
<titleInfo>
<title>DEFT: A corpus for definition extraction in free- and semi-structured text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sasha</namePart>
<namePart type="family">Spala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Dockhorn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Linguistic Annotation Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Annemarie</namePart>
<namePart type="family">Friedrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deniz</namePart>
<namePart type="family">Zeyrek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jet</namePart>
<namePart type="family">Hoek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Definition extraction has been a popular topic in NLP research for well more than a decade, but has been historically limited to well-defined, structured, and narrow conditions. In reality, natural language is messy, and messy data requires both complex solutions and data that reflects that reality. In this paper, we present a robust English corpus and annotation schema that allows us to explore the less straightforward examples of term-definition structures in free and semi-structured text.</abstract>
<identifier type="citekey">spala-etal-2019-deft</identifier>
<identifier type="doi">10.18653/v1/W19-4015</identifier>
<location>
<url>https://aclanthology.org/W19-4015</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>124</start>
<end>131</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DEFT: A corpus for definition extraction in free- and semi-structured text
%A Spala, Sasha
%A Miller, Nicholas A.
%A Yang, Yiming
%A Dernoncourt, Franck
%A Dockhorn, Carl
%Y Friedrich, Annemarie
%Y Zeyrek, Deniz
%Y Hoek, Jet
%S Proceedings of the 13th Linguistic Annotation Workshop
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F spala-etal-2019-deft
%X Definition extraction has been a popular topic in NLP research for well more than a decade, but has been historically limited to well-defined, structured, and narrow conditions. In reality, natural language is messy, and messy data requires both complex solutions and data that reflects that reality. In this paper, we present a robust English corpus and annotation schema that allows us to explore the less straightforward examples of term-definition structures in free and semi-structured text.
%R 10.18653/v1/W19-4015
%U https://aclanthology.org/W19-4015
%U https://doi.org/10.18653/v1/W19-4015
%P 124-131
Markdown (Informal)
[DEFT: A corpus for definition extraction in free- and semi-structured text](https://aclanthology.org/W19-4015) (Spala et al., LAW 2019)
ACL