@inproceedings{henderson-etal-2019-repository,
    title = "A Repository of Conversational Datasets",
    author = "Henderson, Matthew  and
      Budzianowski, Pawe{\l}  and
      Casanueva, I{\~n}igo  and
      Coope, Sam  and
      Gerz, Daniela  and
      Kumar, Girish  and
      Mrk{\v{s}}i{\'c}, Nikola  and
      Spithourakis, Georgios  and
      Su, Pei-Hao  and
      Vuli{\'c}, Ivan  and
      Wen, Tsung-Hsien",
    editor = "Chen, Yun-Nung  and
      Bedrax-Weiss, Tania  and
      Hakkani-Tur, Dilek  and
      Kumar, Anuj  and
      Lewis, Mike  and
      Luong, Thang-Minh  and
      Su, Pei-Hao  and
      Wen, Tsung-Hsien",
    booktitle = "Proceedings of the First Workshop on NLP for Conversational AI",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-4101/",
    doi = "10.18653/v1/W19-4101",
    pages = "1--10",
    abstract = "Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using 1-of-100 accuracy. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="henderson-etal-2019-repository">
    <titleInfo>
        <title>A Repository of Conversational Datasets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Matthew</namePart>
        <namePart type="family">Henderson</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Paweł</namePart>
        <namePart type="family">Budzianowski</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Iñigo</namePart>
        <namePart type="family">Casanueva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sam</namePart>
        <namePart type="family">Coope</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Daniela</namePart>
        <namePart type="family">Gerz</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Girish</namePart>
        <namePart type="family">Kumar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nikola</namePart>
        <namePart type="family">Mrkšić</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Georgios</namePart>
        <namePart type="family">Spithourakis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Pei-Hao</namePart>
        <namePart type="family">Su</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ivan</namePart>
        <namePart type="family">Vulić</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tsung-Hsien</namePart>
        <namePart type="family">Wen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the First Workshop on NLP for Conversational AI</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Yun-Nung</namePart>
            <namePart type="family">Chen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tania</namePart>
            <namePart type="family">Bedrax-Weiss</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dilek</namePart>
            <namePart type="family">Hakkani-Tur</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Anuj</namePart>
            <namePart type="family">Kumar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mike</namePart>
            <namePart type="family">Lewis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thang-Minh</namePart>
            <namePart type="family">Luong</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Pei-Hao</namePart>
            <namePart type="family">Su</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tsung-Hsien</namePart>
            <namePart type="family">Wen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using 1-of-100 accuracy. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.</abstract>
    <identifier type="citekey">henderson-etal-2019-repository</identifier>
    <identifier type="doi">10.18653/v1/W19-4101</identifier>
    <location>
        <url>https://aclanthology.org/W19-4101/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>1</start>
            <end>10</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Repository of Conversational Datasets
%A Henderson, Matthew
%A Budzianowski, Paweł
%A Casanueva, Iñigo
%A Coope, Sam
%A Gerz, Daniela
%A Kumar, Girish
%A Mrkšić, Nikola
%A Spithourakis, Georgios
%A Su, Pei-Hao
%A Vulić, Ivan
%A Wen, Tsung-Hsien
%Y Chen, Yun-Nung
%Y Bedrax-Weiss, Tania
%Y Hakkani-Tur, Dilek
%Y Kumar, Anuj
%Y Lewis, Mike
%Y Luong, Thang-Minh
%Y Su, Pei-Hao
%Y Wen, Tsung-Hsien
%S Proceedings of the First Workshop on NLP for Conversational AI
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F henderson-etal-2019-repository
%X Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using 1-of-100 accuracy. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.
%R 10.18653/v1/W19-4101
%U https://aclanthology.org/W19-4101/
%U https://doi.org/10.18653/v1/W19-4101
%P 1-10
Markdown (Informal)
[A Repository of Conversational Datasets](https://aclanthology.org/W19-4101/) (Henderson et al., ACL 2019)
ACL
- Matthew Henderson, Paweł Budzianowski, Iñigo Casanueva, Sam Coope, Daniela Gerz, Girish Kumar, Nikola Mrkšić, Georgios Spithourakis, Pei-Hao Su, Ivan Vulić, and Tsung-Hsien Wen. 2019. A Repository of Conversational Datasets. In Proceedings of the First Workshop on NLP for Conversational AI, pages 1–10, Florence, Italy. Association for Computational Linguistics.