@inproceedings{shadikhodjaev-lee-2019-cbnu,
title = "{CBNU} System for {SIGMORPHON} 2019 Shared Task 2: a Pipeline Model",
author = "Shadikhodjaev, Uygun and
Lee, Jae Sung",
editor = "Nicolai, Garrett and
Cotterell, Ryan",
booktitle = "Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4204",
doi = "10.18653/v1/W19-4204",
pages = "19--24",
abstract = "In this paper we describe our system for morphological analysis and lemmatization in context, using a transformer-based sequence to sequence model and a biaffine attention based BiLSTM model. First, a lemma is produced for a given word, and then both the lemma and the given word are used for morphological analysis. We also make use of character level word encodings and trainable encodings to improve accuracy. Overall, our system ranked fifth in lemmatization and sixth in morphological accuracy among twelve systems, and demonstrated considerable improvements over the baseline in morphological analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shadikhodjaev-lee-2019-cbnu">
<titleInfo>
<title>CBNU System for SIGMORPHON 2019 Shared Task 2: a Pipeline Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Uygun</namePart>
<namePart type="family">Shadikhodjaev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jae</namePart>
<namePart type="given">Sung</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe our system for morphological analysis and lemmatization in context, using a transformer-based sequence to sequence model and a biaffine attention based BiLSTM model. First, a lemma is produced for a given word, and then both the lemma and the given word are used for morphological analysis. We also make use of character level word encodings and trainable encodings to improve accuracy. Overall, our system ranked fifth in lemmatization and sixth in morphological accuracy among twelve systems, and demonstrated considerable improvements over the baseline in morphological analysis.</abstract>
<identifier type="citekey">shadikhodjaev-lee-2019-cbnu</identifier>
<identifier type="doi">10.18653/v1/W19-4204</identifier>
<location>
<url>https://aclanthology.org/W19-4204</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>19</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CBNU System for SIGMORPHON 2019 Shared Task 2: a Pipeline Model
%A Shadikhodjaev, Uygun
%A Lee, Jae Sung
%Y Nicolai, Garrett
%Y Cotterell, Ryan
%S Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F shadikhodjaev-lee-2019-cbnu
%X In this paper we describe our system for morphological analysis and lemmatization in context, using a transformer-based sequence to sequence model and a biaffine attention based BiLSTM model. First, a lemma is produced for a given word, and then both the lemma and the given word are used for morphological analysis. We also make use of character level word encodings and trainable encodings to improve accuracy. Overall, our system ranked fifth in lemmatization and sixth in morphological accuracy among twelve systems, and demonstrated considerable improvements over the baseline in morphological analysis.
%R 10.18653/v1/W19-4204
%U https://aclanthology.org/W19-4204
%U https://doi.org/10.18653/v1/W19-4204
%P 19-24
Markdown (Informal)
[CBNU System for SIGMORPHON 2019 Shared Task 2: a Pipeline Model](https://aclanthology.org/W19-4204) (Shadikhodjaev & Lee, ACL 2019)
ACL