@inproceedings{sorokin-2019-convolutional,
    title = "Convolutional neural networks for low-resource morpheme segmentation: baseline or state-of-the-art?",
    author = "Sorokin, Alexey",
    editor = "Nicolai, Garrett  and
      Cotterell, Ryan",
    booktitle = "Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-4218/",
    doi = "10.18653/v1/W19-4218",
    pages = "154--159",
    abstract = "We apply convolutional neural networks to the task of shallow morpheme segmentation using low-resource datasets for 5 different languages. We show that both in fully supervised and semi-supervised settings our model beats previous state-of-the-art approaches. We argue that convolutional neural networks reflect local nature of morpheme segmentation better than other semi-supervised approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sorokin-2019-convolutional">
    <titleInfo>
        <title>Convolutional neural networks for low-resource morpheme segmentation: baseline or state-of-the-art?</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Alexey</namePart>
        <namePart type="family">Sorokin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Garrett</namePart>
            <namePart type="family">Nicolai</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ryan</namePart>
            <namePart type="family">Cotterell</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We apply convolutional neural networks to the task of shallow morpheme segmentation using low-resource datasets for 5 different languages. We show that both in fully supervised and semi-supervised settings our model beats previous state-of-the-art approaches. We argue that convolutional neural networks reflect local nature of morpheme segmentation better than other semi-supervised approaches.</abstract>
    <identifier type="citekey">sorokin-2019-convolutional</identifier>
    <identifier type="doi">10.18653/v1/W19-4218</identifier>
    <location>
        <url>https://aclanthology.org/W19-4218/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>154</start>
            <end>159</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Convolutional neural networks for low-resource morpheme segmentation: baseline or state-of-the-art?
%A Sorokin, Alexey
%Y Nicolai, Garrett
%Y Cotterell, Ryan
%S Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F sorokin-2019-convolutional
%X We apply convolutional neural networks to the task of shallow morpheme segmentation using low-resource datasets for 5 different languages. We show that both in fully supervised and semi-supervised settings our model beats previous state-of-the-art approaches. We argue that convolutional neural networks reflect local nature of morpheme segmentation better than other semi-supervised approaches.
%R 10.18653/v1/W19-4218
%U https://aclanthology.org/W19-4218/
%U https://doi.org/10.18653/v1/W19-4218
%P 154-159
Markdown (Informal)
[Convolutional neural networks for low-resource morpheme segmentation: baseline or state-of-the-art?](https://aclanthology.org/W19-4218/) (Sorokin, ACL 2019)
ACL