@inproceedings{eskander-etal-2019-unsupervised,
title = "Unsupervised Morphological Segmentation for Low-Resource Polysynthetic Languages",
author = "Eskander, Ramy and
Klavans, Judith and
Muresan, Smaranda",
editor = "Nicolai, Garrett and
Cotterell, Ryan",
booktitle = "Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4222",
doi = "10.18653/v1/W19-4222",
pages = "189--195",
abstract = "Polysynthetic languages pose a challenge for morphological analysis due to the root-morpheme complexity and to the word class {``}squish{''}. In addition, many of these polysynthetic languages are low-resource. We propose unsupervised approaches for morphological segmentation of low-resource polysynthetic languages based on Adaptor Grammars (AG) (Eskander et al., 2016). We experiment with four languages from the Uto-Aztecan family. Our AG-based approaches outperform other unsupervised approaches and show promise when compared to supervised methods, outperforming them on two of the four languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eskander-etal-2019-unsupervised">
<titleInfo>
<title>Unsupervised Morphological Segmentation for Low-Resource Polysynthetic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Eskander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Klavans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Polysynthetic languages pose a challenge for morphological analysis due to the root-morpheme complexity and to the word class “squish”. In addition, many of these polysynthetic languages are low-resource. We propose unsupervised approaches for morphological segmentation of low-resource polysynthetic languages based on Adaptor Grammars (AG) (Eskander et al., 2016). We experiment with four languages from the Uto-Aztecan family. Our AG-based approaches outperform other unsupervised approaches and show promise when compared to supervised methods, outperforming them on two of the four languages.</abstract>
<identifier type="citekey">eskander-etal-2019-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W19-4222</identifier>
<location>
<url>https://aclanthology.org/W19-4222</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>189</start>
<end>195</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Morphological Segmentation for Low-Resource Polysynthetic Languages
%A Eskander, Ramy
%A Klavans, Judith
%A Muresan, Smaranda
%Y Nicolai, Garrett
%Y Cotterell, Ryan
%S Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F eskander-etal-2019-unsupervised
%X Polysynthetic languages pose a challenge for morphological analysis due to the root-morpheme complexity and to the word class “squish”. In addition, many of these polysynthetic languages are low-resource. We propose unsupervised approaches for morphological segmentation of low-resource polysynthetic languages based on Adaptor Grammars (AG) (Eskander et al., 2016). We experiment with four languages from the Uto-Aztecan family. Our AG-based approaches outperform other unsupervised approaches and show promise when compared to supervised methods, outperforming them on two of the four languages.
%R 10.18653/v1/W19-4222
%U https://aclanthology.org/W19-4222
%U https://doi.org/10.18653/v1/W19-4222
%P 189-195
Markdown (Informal)
[Unsupervised Morphological Segmentation for Low-Resource Polysynthetic Languages](https://aclanthology.org/W19-4222) (Eskander et al., ACL 2019)
ACL