@inproceedings{jacobs-mailhot-2019-encoder,
title = "Encoder-decoder models for latent phonological representations of words",
author = "Jacobs, Cassandra L. and
Mailhot, Fr{\'e}d{\'e}ric",
editor = "Nicolai, Garrett and
Cotterell, Ryan",
booktitle = "Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4224",
doi = "10.18653/v1/W19-4224",
pages = "206--217",
abstract = "We use sequence-to-sequence networks trained on sequential phonetic encoding tasks to construct compositional phonological representations of words. We show that the output of an encoder network can predict the phonetic durations of American English words better than a number of alternative forms. We also show that the model{'}s learned representations map onto existing measures of words{'} phonological structure (phonological neighborhood density and phonotactic probability).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jacobs-mailhot-2019-encoder">
<titleInfo>
<title>Encoder-decoder models for latent phonological representations of words</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Mailhot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We use sequence-to-sequence networks trained on sequential phonetic encoding tasks to construct compositional phonological representations of words. We show that the output of an encoder network can predict the phonetic durations of American English words better than a number of alternative forms. We also show that the model’s learned representations map onto existing measures of words’ phonological structure (phonological neighborhood density and phonotactic probability).</abstract>
<identifier type="citekey">jacobs-mailhot-2019-encoder</identifier>
<identifier type="doi">10.18653/v1/W19-4224</identifier>
<location>
<url>https://aclanthology.org/W19-4224</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>206</start>
<end>217</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Encoder-decoder models for latent phonological representations of words
%A Jacobs, Cassandra L.
%A Mailhot, Frédéric
%Y Nicolai, Garrett
%Y Cotterell, Ryan
%S Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F jacobs-mailhot-2019-encoder
%X We use sequence-to-sequence networks trained on sequential phonetic encoding tasks to construct compositional phonological representations of words. We show that the output of an encoder network can predict the phonetic durations of American English words better than a number of alternative forms. We also show that the model’s learned representations map onto existing measures of words’ phonological structure (phonological neighborhood density and phonotactic probability).
%R 10.18653/v1/W19-4224
%U https://aclanthology.org/W19-4224
%U https://doi.org/10.18653/v1/W19-4224
%P 206-217
Markdown (Informal)
[Encoder-decoder models for latent phonological representations of words](https://aclanthology.org/W19-4224) (Jacobs & Mailhot, ACL 2019)
ACL