@inproceedings{raganato-etal-2019-evaluation,
title = "An Evaluation of Language-Agnostic Inner-Attention-Based Representations in Machine Translation",
author = {Raganato, Alessandro and
V{\'a}zquez, Ra{\'u}l and
Creutz, Mathias and
Tiedemann, J{\"o}rg},
editor = "Augenstein, Isabelle and
Gella, Spandana and
Ruder, Sebastian and
Kann, Katharina and
Can, Burcu and
Welbl, Johannes and
Conneau, Alexis and
Ren, Xiang and
Rei, Marek",
booktitle = "Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4304/",
doi = "10.18653/v1/W19-4304",
pages = "27--32",
abstract = "In this paper, we explore a multilingual translation model with a cross-lingually shared layer that can be used as fixed-size sentence representation in different downstream tasks. We systematically study the impact of the size of the shared layer and the effect of including additional languages in the model. In contrast to related previous work, we demonstrate that the performance in translation does correlate with trainable downstream tasks. In particular, we show that larger intermediate layers not only improve translation quality, especially for long sentences, but also push the accuracy of trainable classification tasks. On the other hand, shorter representations lead to increased compression that is beneficial in non-trainable similarity tasks. We hypothesize that the training procedure on the downstream task enables the model to identify the encoded information that is useful for the specific task whereas non-trainable benchmarks can be confused by other types of information also encoded in the representation of a sentence."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="raganato-etal-2019-evaluation">
<titleInfo>
<title>An Evaluation of Language-Agnostic Inner-Attention-Based Representations in Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Raganato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raúl</namePart>
<namePart type="family">Vázquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Creutz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Kann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Welbl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Conneau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we explore a multilingual translation model with a cross-lingually shared layer that can be used as fixed-size sentence representation in different downstream tasks. We systematically study the impact of the size of the shared layer and the effect of including additional languages in the model. In contrast to related previous work, we demonstrate that the performance in translation does correlate with trainable downstream tasks. In particular, we show that larger intermediate layers not only improve translation quality, especially for long sentences, but also push the accuracy of trainable classification tasks. On the other hand, shorter representations lead to increased compression that is beneficial in non-trainable similarity tasks. We hypothesize that the training procedure on the downstream task enables the model to identify the encoded information that is useful for the specific task whereas non-trainable benchmarks can be confused by other types of information also encoded in the representation of a sentence.</abstract>
<identifier type="citekey">raganato-etal-2019-evaluation</identifier>
<identifier type="doi">10.18653/v1/W19-4304</identifier>
<location>
<url>https://aclanthology.org/W19-4304/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>27</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Evaluation of Language-Agnostic Inner-Attention-Based Representations in Machine Translation
%A Raganato, Alessandro
%A Vázquez, Raúl
%A Creutz, Mathias
%A Tiedemann, Jörg
%Y Augenstein, Isabelle
%Y Gella, Spandana
%Y Ruder, Sebastian
%Y Kann, Katharina
%Y Can, Burcu
%Y Welbl, Johannes
%Y Conneau, Alexis
%Y Ren, Xiang
%Y Rei, Marek
%S Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F raganato-etal-2019-evaluation
%X In this paper, we explore a multilingual translation model with a cross-lingually shared layer that can be used as fixed-size sentence representation in different downstream tasks. We systematically study the impact of the size of the shared layer and the effect of including additional languages in the model. In contrast to related previous work, we demonstrate that the performance in translation does correlate with trainable downstream tasks. In particular, we show that larger intermediate layers not only improve translation quality, especially for long sentences, but also push the accuracy of trainable classification tasks. On the other hand, shorter representations lead to increased compression that is beneficial in non-trainable similarity tasks. We hypothesize that the training procedure on the downstream task enables the model to identify the encoded information that is useful for the specific task whereas non-trainable benchmarks can be confused by other types of information also encoded in the representation of a sentence.
%R 10.18653/v1/W19-4304
%U https://aclanthology.org/W19-4304/
%U https://doi.org/10.18653/v1/W19-4304
%P 27-32
Markdown (Informal)
[An Evaluation of Language-Agnostic Inner-Attention-Based Representations in Machine Translation](https://aclanthology.org/W19-4304/) (Raganato et al., RepL4NLP 2019)
ACL