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Abstract
Vector representations of words have seen an
increasing success over the past years in a va-
riety of NLP tasks. While there seems to be a
consensus about the usefulness of word em-
beddings and how to learn them, it is still
unclear which representations can capture the
meaning of phrases or even whole sentences.
Recent work has shown that simple operations
outperform more complex deep architectures.
In this work, we propose two novel constraints
for computing noun phrase vector representa-
tions. First, we propose that the semantic and
not the syntactic contribution of each compo-
nent of a noun phrase should be considered,
so that the resulting composed vectors express
more of the phrase meaning. Second, the
composition process of the two phrase vectors
should apply suitable dimensions’ selection in
a way that specific semantic features captured
by the phrase’s meaning become more salient.
Our proposed methods are compared to 11
other approaches, including popular baselines
and a neural net architecture, and are evaluated
across 6 tasks and 2 datasets. Our results show
that these constraints lead to more expressive
phrase representations and can be applied to
other state-of-the-art methods to improve their
performance.

1 Introduction

Vector representations of words date back to the
1990’s (Landauer and Dumais, 1997) and have
seen an increasing success over the past years
(Mikolov et al., 2013; Pennington et al., 2014;
Devlin et al., 2018). While there seems to be
a consensus about the usefulness of word em-
beddings and how to learn them, it is still con-
troversial how to learn representations that cap-
ture the meaning of phrases or even whole sen-
tences (Zhu et al., 2018). Generally, two main ap-
proaches are used to compute phrase representa-
tions: non-compositional and compositional. The

former treats phrases as single units and attempts
to learn their representations directly from cor-
pora, much as it is done for words (Socher et al.,
2010; Mikolov et al., 2013; Yin and Schütze,
2014). These approaches ignore the components
of the phrase and are not scalable to all possible
phrases of a language. On the other hand, the com-
positional approach derives a phrase or sentence
representation from the embeddings of its compo-
nent words in various ways, from simple addition
and average operations, e.g., Mitchell and Lap-
ata (2010); Turney (2012), to more complex neu-
ral net architectures, e.g., Pagliardini et al. (2018);
Conneau et al. (2017). However, such approaches
often ignore word order and other linguistic intu-
itions and lead to representations that cannot truly
express the meaning of the sentence, as recently
discussed by Zhu et al. (2018).

We concentrate on efficient phrase representa-
tions which capture meaning and can be handled
as sentence components. We believe that from
such representations the meaning of a full sen-
tence can be compositionally computed, much as
in more traditional semantic theories, e.g. in the
Fregean functional application. For example, if we
can compute efficient representations for all possi-
ble phrases contained in constituency parsing, say
NP, VP, PP, etc., we can then derive the mean-
ing of the whole sentence by functionally applying
the constituents’ representations on each other. To
this end, we believe that for compositional phrases
there should be compositional phrase representa-
tions, while for non-compositional ones, e.g., id-
ioms, learning direct representations from corpora
might be more effective. In this paper, we focus on
bigram compositional nominal phrase vectors of
adjective-noun and noun-noun (compounds) com-
binations. By starting from this linguistic cate-
gory, we can reliably evaluate the two constraints
we propose on one of the most common con-
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stituent types, namely the NP phrase. Specifically,
in this work we propose two novel constraints for
computing such phrase vectors that are linguisti-
cally informed and intuitively explainable. First,
we propose to focus on the semantic – and not the
syntactic – contribution of each phrase component
and decide whether the syntactic head or the syn-
tactic modifier (Marneffe et al., 2006; McDonald
et al., 2013) is semantically more significant for
the meaning of the phrase. The phrase component
with the most clear contribution to the meaning of
the phrase might actually be the syntactic modifier
and not the syntactic head and then this word is to
be treated as the semantic head for the composi-
tion. Second, we propose that for two given word
embeddings that need to be composed, we should
select for the composition only those dimensions
of the semantic modifier embedding that are more
relevant to the semantic head of the phrase. In
order words, we need to pick from the semantic
modifier these attributes that are more relevant to
the semantic head phrase. For example, for the
compositional phrase black magic, intuitively we
want to select all dimensions of black that have to
do something with magic and not others that have
to do with, e.g. t-shirt. In this way, we can com-
pose the representation black magic by combining
the attributes of magic with the “magic-like” at-
tributes of black.

The contributions of this paper are three-fold:
Firstly, we propose two novel constraints for com-
posing linguistically informed and intuitively ex-
plainable noun phrase representations and show
how these approaches could benefit future compo-
sition methods. Secondly, we provide a thorough
evaluation of our methods over 6 evaluation tasks,
2 datasets and 11 other methods. Thirdly, we
create an evaluation dataset of nomimal phrase-
unigram paraphrase pairs, which we make openly
available.

2 Relevant work

Early work on representing word sequences fo-
cused on bigram compositionality and considered
various simple functions, such as vector addi-
tion and averaging (Mitchell and Lapata, 2010;
Blacoe and Lapata, 2012), while already Turney
(2012) integrated features for more meaningful re-
lations. This early work focused on the representa-
tion of specific syntactic constructions and specific
number of words and continues to be an ongo-

ing research topic: representations of verb phrases
(Hashimoto and Tsuruoka, 2016), noun phrases
(Baroni and Zamparelli, 2010; Boleda et al., 2013;
Dima, 2016), a combination of the two (Zan-
zotto et al., 2010; Wieting et al., 2015), noun-
noun compositionality (Reddy et al., 2011; Her-
mann et al., 2012; Cordeiro et al., 2018), noun
phrases attribute meaning (Hartung et al., 2017;
Shwartz and Waterson, 2018), etc. This strand
of research covers a variety of approaches rang-
ing from the simple vector arithmetics mentioned
to vector-matrix composition operations (Zanzotto
et al., 2010; Guevara, 2010; Baroni and Zampar-
elli, 2010; Boleda et al., 2013), to the functional
application of word vectors (Coecke et al., 2010;
Grefenstette et al., 2014) to RNNs (Wieting et al.,
2015) and other supervised (Hartung et al., 2017;
Shwartz and Waterson, 2018) or unsupervised ap-
proaches (Hermann et al., 2012). Particularly, re-
cent research producing context-aware representa-
tions of words (Peters et al., 2018; Devlin et al.,
2018) has already had a great impact on the per-
formance of many of these composition functions.
At the same time, another strand of research con-
centrates on representing arbitrarily long phrases
and sentences and mainly employs neural nets ar-
chitectures: bag-of-words models (Kalchbrenner
et al., 2014), feature-weighted average (Yu and
Dredze, 2015) models, deep averaging networks
(Iyyer et al., 2015), recursive (Socher et al., 2013;
Conneau et al., 2017) and convolutional NNs (Yin
and Schütze, 2015), encoding-decoding architec-
tures (Kiros et al., 2015), to name only a few. De-
spite the large number of such approaches, it is
still not clear that the composed phrase or sen-
tence embeddings express the intended meaning,
as recently shown by Shwartz and Dagan (2019),
Zhu et al. (2018) and Dasgupta et al. (2018). Even
more interesting is the fact that averaging and
weighted averaging approaches have been shown
to outperform complex deep learning methods
(White et al., 2015; Wieting et al., 2016; Arora
et al., 2017). This shows potential in exploiting the
merits of simpler approaches but boosting them up
with more powerful intuitive and linguistic con-
straints, as the ones proposed in this work.

3 Proposed Constraints

3.1 Constraint One: Semantic Contribution

The (dependency) syntax informs us that in an En-
glish bigram compositional, nominal phrase, the
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first word is the modifier and the second the head.
However, we observe that this syntactic decision
does not always coincide with the role that each
word plays in the meaning of the phrase. It can be
the case that the modifier is more “meaningful” for
the phrase. For example, if someone says space
ship, we would be inclined to first think of space
than of a prototypical ship. In that sense, space has
a more significant contribution to the meaning of
the phrase than ship has. By contrast, in the phrase
black magic the notion of magic is more prototyp-
ical for the meaning of the phrase.

Current work that aims at compositionally con-
structing phrase representations takes the asym-
metric contribution of the phrase components into
account, e.g. by assigning different weights to
the modifier and the head. However, all of this
work bases the contribution decision on the syn-
tax, i.e. on the syntactic head and modifier. How-
ever, as it has already been observed for English
noun-noun compositionality (Bannard et al., 2003;
Reddy et al., 2011; Cordeiro et al., 2018), the first
component of a noun-noun phrase, i.e. the (syn-
tactic) modifier, might have a greater contribution
to the meaning of the phrase. Similar is the lit-
erature for other linguistic phenomena, e.g., light
verbs (e.g., take a shower, give a kiss) or auxil-
iaries where the syntactic head does not coincide
with the semantic, (see, e.g., Butt, 2010), but also
in traditional semantic composition (e.g., lambda
calculus) the quantifier of a sentence serves as the
head, although the verb is considered the syntac-
tic head of the sentence. Although this asymme-
try has been observed for nominal phrases as well,
e.g. by Hartung et al. (2017) who find that ad-
jective representations capture more of the com-
positional semantics of an adjective-noun phrase
than nouns do and implicitly also by Mitchell and
Lapata (2010), whose composition functions give
more weight to the adjectives than to the nouns,
to our knowledge this is the first work that ac-
tively proposes and integrates this constraint into
the composition process.

To compose meaningful phrase representations,
we propose to consider the semantic contribution
of the syntactic head and modifier of a phrase. In
other words, we need to consider which is the se-
mantic head and which is the semantic modifier.
To this end, we can use word embeddings to de-
cide whether a phrase is heady, i.e. the syntactic
head has a stronger semantic contribution than the

syntactic modifier, mody, i.e. the syntactic modi-
fier has a stronger semantic contribution than the
syntactic head, or equal, i.e. the syntactic head
and modifier have both the same contribution to
the meaning of the phrase. For bigram phrases that
can be paraphrased by a single synonym –called
target from now on – (e.g. black magic = sorcery),
we find that the embeddings of some targets are
more similar to the syntactic modifier embedding
and of some others more similar to the syntactic
head embedding of the phrase. We implement this
observation: we compute the cosine similarity of
the syntactic head to the target and of the syntactic
modifier to the target and calculate their ∆. If the
∆ is more than one standard deviation under the
mean of all ∆s (z-score computation), then the la-
bel equal is given, to account for cases where both
words have an equal contribution to the meaning.
Otherwise, the phrase is labeled based on whether
the similarity of the syntactic head to the target or
the syntactic modifier to the target is greater.

Since this approach for deciding on the seman-
tic contribution of the syntactic head and modifier
relies on the similarity of each of those compo-
nents to a target, it is not available for all possi-
ble phrases because there is not one suitable uni-
gram paraphrase/synonym for each phrase. There-
fore, we want to test if the semantic contribu-
tion constraint is indeed a quantifiable, inherent
property of the phrases that can be learned and
can thus still be applied to phrases without tar-
gets. We did initial experimenting to train a clas-
sifier with a balanced set of 1000 headys and 1000
modys.1 The collection of this set will be de-
scribed in Section 4.2. For the classifier, we used
80% of the instances for training and 20% for test-
ing. The classifier had to learn the mody-heady la-
bel solely based on the embeddings of the phrase
components and without seeing any target embed-
ding. The best trained model so far has been a
MultiLayer Perceptron (MLP) with 3 hidden lay-
ers, 70 neurons per layer, 200 iterations and ran-
dom weight initialization, delivering an accuracy
of 74.8%. This shows that the semantic contribu-
tion constraint is indeed an inherent property of
the embeddings that can be learnt from phrases
having synonym-targets and be used for labeling
phrases without such targets. Further experiment-
ing and more training data can potentially improve

1We left out the equal label for this experiment due to the
low number of such training samples.



87

this performance further.

3.2 Constraint Two: Dimensions’ selection

The first constraint allows us to formulate a fur-
ther one that directly shapes the composition pro-
cess of phrase representations. Precisely, we pro-
pose that a composed representation of a bigram
phrase should contain attributes of the semantic
head embedding and only those attributes of the
semantic modifier that are more relevant to the se-
mantic head. This means that we need to select
only those dimensions of the embedding of the se-
mantic modifier that are related to the semantic
head. Let’s look at an example: black magic is
a heady phrase, i.e. the contribution of the syn-
tactic head magic is more significant for the over-
all meaning of the phrase than the contribution of
black. This becomes even clearer if we think of
a target synonym such as sorcery: for the mean-
ing of the word sorcery, magic has a stronger cor-
relation than black has. Thus, in this example,
the composed vector should include the dimen-
sions of magic and only those dimensions of black
that are relevant to magic. “More relevant” dimen-
sions are formalized as dimensions that are closer
together. Even in embeddings, where the vec-
tors do not mirror the frequency co-occurrences of
the given word to other words of the vocabulary
in a one-to-one fashion and no matter the dimen-
sionality reduction approach, the same dimension
should be capturing similar properties across dif-
ferent words, since each dimension corresponds to
the same neuron having produced it. Thus, the
same dimensions of the two phrase components
embeddings that are closer together should corre-
spond to similar notions and closer points in the
vector space.

Intuitively, this dimensions’ selection imple-
ments the idea that the composition of two words
results in specific semantic aspects becoming
more salient. This intuition is close to the dila-
tion model of Mitchell and Lapata (2010), which
attempts to stretch a vector v to the direction of a
vector u in order to compute their composed vec-
tor. It is also similar to the more traditional idea
of functional application: one tensor or vector is
applied to another, resulting into their composi-
tional representation (Coecke et al., 2010; Grefen-
stette et al., 2014). This has also been proposed by
Baroni and Zamparelli (2010) for adjective-noun
composition: the nouns are vectors and corpus-

learned adjective matrices apply to these vectors
producing other vectors. However, this only works
for adjective-noun phrases where the adjectives
can be clearly defined as the functions. For han-
dling noun-noun phrases (and potentially other
phrases), both phrase constituents have to be seen
as terms (similar to λ calculus-like terms) and thus
as vectors that can be applied in any direction.
This allows us to formulate the following func-
tions, which perform a kind of functional applica-
tion, by taking the semantic modifiers as the func-
tions and the semantic heads as the terms applied
on them.

Compositional Function 1 SD
1: function COMPOSESELECTEDDIMSVEC
2: selected dims← []
3: for i = 0 to headEmbed.length do
4: headDim← headEmbed[i]
5: modDim← modEmbed[i]
6: if headDim−modDim < τ then
7: selected dims.append(modDim)
8: else
9: selected dims.append(headDim)

return selected dims

Compositional Function 2 MOD-SD
1: function COMPOSEMODANDSELECTEDDIMSVEC
2: mod selected dims← α ·modEmbed+ β · SD

In the first compositional function 1 (SD) we
compare each dimension of the embedding of the
semantic head of the phrase with the correspond-
ing dimension of the semantic modifier of the
phrase. If their ∆ is under a threshold τ , then
the dimensions are taken to be close enough and
thus relevant and the dimension of the semantic
modifier embedding is inserted unchanged into the
new vector selected dims. If the ∆ is greater than
τ , then the dimensions are taken to be distant and
thus irrelevant to each other other and the dimen-
sion of the head is inserted into selected dims. The
final vector is a mixed vector consisting of a com-
bination of the original modifier and head dimen-
sions. Based on a grid search in steps of 10%
from 0 to 1, we find τ = 0.3 as the best param-
eter for the required threshold. Note that this is
different than the elementwise max operation, as
we do not select the dimension with the highest
value among the two but instead we always select
the semantic modifier dimension as long as its dif-
ference to the semantic head dimension is smaller
than τ , no matter if the semantic modifier’s dimen-
sion is greater or smaller than the head’s. In our
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second proposed composition function (MOD-SD)
we make use of the vector produced by function 1:
we weight the entire vector SD by β and add it
to the original embedding of the semantic modi-
fier which is also weighted by α. This function is
inspired by the well-performing weighted addition
operation but instead of the original semantic head
vector, it uses the constructed functional vector of
1, which captures only the semantic head-relevant
attributes of the semantic modifier and the seman-
tic head attributes. Suitable grid search in steps of
0.02 shows α = 0.32 and β = 0.68 as the best pa-
rameters. All tuning was performed on a held-out
set, consisting of the 50% of the created dataset,
described in Section 4.2.

As it is clear, these two composition functions
heavily depend on the head and modifier roles of
the phrase and are therefore inseparably connected
with the constraint of the semantic contribution
proposed in Section 3.1.

4 Evaluation of the constraints

4.1 Compared Approaches

For evaluation we include baseline approaches of
vector arithmetics, the popular matrix-vector com-
position approach and an own trained neural net-
work. If the injection of our first constraint into
those approaches boosts their performance, the
semantic contribution constraint can be consid-
ered for future composition approaches, especially
those aiming at simple but linguistically informed
operations. On the other hand, if the composition
process described in our second constraint outper-
forms the compared approaches, we can be con-
fident that the dimensions’ selection as proposed
in the previous section is a useful intuition captur-
ing compositionality and can be safely integrated
in future composition tasks.

Baseline approaches We include baseline oper-
ations from the literature that were recently shown
to outperform complex deep architectures (White
et al., 2015; Wieting et al., 2016; Arora et al.,
2017). We use weighted elementwise vector ad-
dition (1) and multiplication (2) (Mitchell and La-
pata, 2010; Turney, 2012; White et al., 2015; Har-
tung et al., 2017; Arora et al., 2017) and weighted
elementwise average (3) (Mikolov et al., 2013;
Wieting et al., 2016). Since addition and multi-
plication have been shown to perform so strongly
and since multiplicative models have the drawback

that the presence of zeroes in either of the vec-
tors leads to information essentially being lost, we
follow Mitchell and Lapata (2010) and also in-
clude a fourth equation, combining the addition
and multiplication operations (4). For the weight-
ing we do our own fine-tuning which is specific to
the dataset we use.2 This fine-tuning also showed
that for our set the distinction between weights for
adjective-noun and noun-noun phrases is not bene-
ficial, contrary to Mitchell and Lapata (2010), who
set the weights based on the part-of-speech. After
tuning, the parameters are set to α = β = 1.0,
which in practice means that the unweighted vari-
ants perform better than their weighted counter-
parts. We also include “easy” baselines involving
only the syntactic head or the syntactic modifier of
the phrase and check whether the proposed com-
positional functions are better than those variants
with no composition at all.
(1) wei addj : rj = αmj + βhj

(2) wei multj : rj = αmj · βhj
(3) wei averj : rj =

αmj+βhj

2

(4) wei combj : rj = αmj + βhj + αmj · βhj

Matrix-vector approaches As already dis-
cussed before, popular approaches for comput-
ing phrases representations are the various matrix-
vector composition operations. Already explored
by Guevara (2010), Baroni and Zamparelli (2010)
and Zanzotto et al. (2010) these approaches have
since been used by various researchers, e.g.
Boleda et al. (2013); Dima (2016). In these ap-
proaches the two constituent vectors of a phrase
u and v ∈ Rn are composed by multiplying them
via two matrices A,B ∈ Rn× n. For Zanzotto
et al. (2010) and Guevara (2010), A and B are
the same for every u and v and are calculated
with partial least squares regression, while for the
adjective-noun composition of Baroni and Zam-
parelli (2010), A is set to 0 and the weight ma-
trix B is specifically learned for each single ad-
jective. The mathematical formulation of this ap-
proach is: r = Au + Bv. Given the effectiveness
of this approach (see e.g. Boleda et al. (2013)),
we compare our proposed functions to it. From
the three works mentioned above implementing
this approach, only Zanzotto et al.’s is suitable
for our purposes because a) it can handle both
adjective-noun and noun-noun combinations and
b) its dataset is openly available.

2In fact, we did test with the original parameters and
found out that they deliver worse performance.
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Deep Learning approach Although White et al.
(2015), Wieting et al. (2016) and Arora et al.
(2017) found that simple operations outperform
complex deep architectures, there is still value in
comparing the performance of a trained neural net
to the performance of the other methods. For
this purpose we experimented with multiple archi-
tectures, including feedforward nets, RNNs and
LSTMs, attempting to find the best that fits our
data. The training (80% of the set) and testing data
(20% of the set) we used will be analyzed in more
detail in the next section. Briefly, the datasets con-
sisted of pairs of embeddings of the phrase compo-
nents and their unigram synonym/paraphrase. For
example, the embeddings of dog and house were
paired with the embedding of the synonymous
kennel. The neural net had to learn the synonym
embedding by considering the two word embed-
dings as input. The best performing model was a
feedforward neural net with 2 hidden dense layers.
We used Xavier weight initialization (Glorot and
Bengio, 2010) and the ELU (Clevert et al., 2015)
activation function for all layers. Our updater was
ADADELTA (Zeiler, 2012) and our learning rate
0.1. The training run for 200 epochs with 0.5
global dropout.

The left-most column of Table 1 gives a better
overview of all compared methods.

4.2 Data

Data collection To tune and evaluate our pro-
posals we needed a set that contains bigram noun
phrases matched to unigram paraphrase/synonym
targets, so that we have a “stable, uncontroversial
” representation to compare our composed repre-
sentations to (see also Zanzotto et al. (2010) and
Turney (2012)). In this way, we can compose
the representation of each phrase of the set with
each of the methods under comparison and ide-
ally, the composed representations are very simi-
lar to the embedding of the target of the pair since
phrase and target have a synonymy/paraphrase re-
lation. This is a harder task than comparing the
composed representation to a corpus-learned rep-
resentation of the phrase because the target rep-
resentation is “independent”, i.e. it does not cap-
ture cooccurrence effects of the components of the
phrase, as the corpus-learned representation does.
To this end, we created a new dataset which we

make openly available.3 The creation process of
the set is similar to that of Turney (2012): we
extract the nouns of WordNet (Fellbaum, 1998)
that have a bigram phrase synonym in their synset
and pair them together, e.g., from the entry ken-
nel, doghouse, dog house (outbuilding that serves
as a shelter for a dog) we extract the pair dog
house - kennel . The pairs were cleaned to ex-
clude all proper names and were further expanded
by Turney’s (2012) set which has the same for-
mat.4 This process resulted in 6109 pairs of this
format. However, not all pairs are compositional;
since we are interested in creating compositional
phrase representations, we wanted to ensure that
we are only evaluating on suitable pairs, as a hot
dog can never be a composition of hot and dog.
To this end, we attempted to automatically ex-
clude non-compositional pairs by following Tur-
ney (2012), who proposes two WordNet-based ap-
proaches: the phrase is most likely compositional
if a) one of the words of the phrase is also present
in the gloss of this phrase (cf. the dog house en-
try) or b) the (syntactic) head noun of the phrase is
also a hypernym of the phrase (e.g., brain surgery
has surgery as its hypernym and it is thus compo-
sitional). We are aware that these methods cannot
eliminate all unsuitable pairs, but the data is much
less noisy now. Future work may attempt to do a
better filtering of non-compositional pairs. 4475
pairs are left, from which we further exclude the
ones where one of the words of the phrase is also
the target (e.g. abdominal muscle - abdominal)
and we get 1914 final pairs. 50% of that set forms
the held-out set used for tuning purposes (Section
3) and the rest of the dataset is used for the evalu-
ation of the methods.

We also evaluate our methods on a second
dataset, the only other dataset we could find fulfill-
ing the requirements of our task5: the noun-noun
set created by Zanzotto et al. (2010) (ZZ from now
on). This set contains the same data format (bi-
gram phrases-unigram paraphrase) and includes
1066 positive examples, i.e. examples where the

3https://github.com/kkalouli/
compositional_phrase_vectors

4The Turney (2012) set was also scraped from WordNet
but we observed that this set and our scraped set were not
subsets, probably due to changes on WordNet over the years
or differences in the scraping process.

5The probably most popular dataset of Mitchell and La-
pata (2010) was not suitable due to its format (no unigram
as comparison element) and the nature of the data, i.e. no
truly synonymous/paraphrastic phrases-targets, merely simi-
lar pairs; also observed by Wieting et al. (2015)

https://github.com/kkalouli/compositional_phrase_vectors
https://github.com/kkalouli/compositional_phrase_vectors
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paraphrase is a valid one for this phrase, and 379
negative ones, where the unigram is not a para-
phrase of the bigram.6

Data preprocessing Since the goal of this work
is to examine the efficiency of the proposed con-
straints for the compositionality of the vectors,
we use pretrained embeddings; however training
more specific embeddings or using state-of-the-
art context-aware embeddings (e.g. Devlin et al.
(2018); Peters et al. (2018)) could be even more
beneficial for the approaches. In fact, by using
such contextualized embeddings, our constraints
could better handle polysemous words as the
base embeddings would be partly disambiguated
from the context. For now, the two datasets are
first matched to the pretrained GloVe (Penning-
ton et al., 2014) embeddings,7 so that each phrase
component and target word are mapped to their
embedding. Then, a module determines whether
the phrase is mody, heady or equal, based on the
procedure described in Section 3.1. This proce-
dure results into 895/515 heady, 792/190 mody
and 227/119 equal for our set and the ZZ set, re-
spectively. So, pairs like black magic - sorcery and
body armor - cataphract become “heady”, arche-
ological site - dig and baseball player - ballplayer
“mody”, and dramatic art - dramaturgy and fe-
male parent - mother “equal”.

4.3 Evaluation Tasks

To compare the approaches, we employed 6 eval-
uations tasks, aiming at testing different semantic
aspects of the phrases. Our goal is to see which of
the 13 methods perform best in each of the tasks.
We include popular tasks, like synonymy detec-
tion and concept clustering (see, e.g., Baroni et al.,
2014; Schnabel et al., 2015), but we do not employ
the human similarity judgments task. We are not
convinced that semantic similarity can be scaled in
a range of 1 to 7 as we are not sure how one should
decide, e.g., between a 3 and a 4. Such criticisms
were also discussed by Faruqui et al. (2016).

Plain similarity One of the most common in-
trinsic evaluation tasks is the semantic similarity
between an item and a target. Since targets are
part of our dataset, the simplest task is to calculate

6For our purposes, we excluded pairs containing proper
names in capital due to the lack of pretrained embeddings for
those, resulting in a set of 824 pairs.

7Trained on Wikipedia 2014 and Gigaword 5, 300 dim.

the cosine similarity between the composed vector
of a phrase and the embedding of its target.

Precision This task is a modification of the anal-
ogy task of Mikolov et al. (2013). Given a phrase
vector and its neighbors in the semantic space,
we check if the target word is its closest neighbor
(cf. Baroni and Zamparelli (2010); Mikolov et al.
(2013)). The task is also undertaken for the next
two closest neighbors of the phrase. Ultimately,
we measure Precision@1, Precision@2 and Pre-
cision@3, respectively, for how many items of
our set had their targets as neighbors at the cor-
responding positions.

Overlapping neighbors Here we measure how
many neighbors of the phrase representation are
also neighbors of the target embedding. Since em-
beddings capture the relational co-occurrences of
words, it should be the case that the phrase and
the target vectors share neighbors. This would
mean that they are closer in the semantic space
than items not sharing any neighbors, even if the
target word itself is not a neighbor of the phrase
embedding.

Synonymy detection This popular task, first ap-
plied on the TOEFL examples for word embed-
dings (Landauer and Dumais, 1997), is to select
out of some candidate targets, the one with the
highest similarity to the given word. Similarly, (cf.
Turney, 2012) we create a set of 7 candidate uni-
grams for each given phrase: its syntactic modi-
fier, its syntactic head, its target, a synonym of its
syntactic modifier and of its syntactic head8 and
two random words. We compute the similarity of
the phrase representation to each of those and cre-
ate a ranked list of the 7 candidates. Targets that
are lower in the ranked list are penalized and tar-
gets that are higher up are boosted; conversely for
the random words. Ultimately, we obtain a score
between -1 and 1, with -1 being the worst with a
random word at rank 1 and the target at the last
rank and 1 standing for the best case where the
target is at rank 1 and the randoms last.

Clustering A popular task is concept catego-
rization or clustering. Given a set of concepts, the
task is to group them into categories. We adjust
this task to measure how many of the phrase rep-
resentations are clustered together with their target
embedding. If the phrase vector truly expresses

8Extracted from WordNet.
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Created dataset ZZ dataset
Method Sim Pr@1 Pr@2 Pr@3 OveNei Syn Clus DistSim
only head 21.6 1.3 2.3 3.3 0.92 0.17 5.2 2.82E-31
only mod 20.6 4.5 6.8 8.3 1.08 0.16 3.5 6.68E-52
sd (Const1 + Const2) 28.5 5.6 8.4 10.3 1.80 0.23 6.7 1.09E-41
mod-sd (Const1 + Const2) 28.0 6.0 8.3 10.1 1.75 0.17 6.8 6.71E-47
add 26.3 4.1 7.6 9.2 1.54 0.16 4.9 9.43E-49
mult -0.5 0.0 0.0 0.0 0.01 -0.37 1.7 0.0801
aver 26.3 4.1 7.6 9.2 1.54 0.16 5.9 9.43E-49
comb 25.9 4.4 7.6 10.0 1.65 0.17 4.9 3.58E-44
add+Const1 29.0 5.7 8.9 10.4 1.80 0.18 7.0 8.58E-47
aver+Const1 29.0 5.7 8.9 10.4 1.80 0.18 4.1 8.58E-47
comb+Const1 29.2 5.7 8.5 11.0 1.85 0.19 7.0 6.27E-46
feedforward NN 24.0 0.2 0.2 0.2 0.36 0.24 0.5 -
matr-vec (Zanzotto et al., 2010) - - - - - - - 1.00E-10

Table 1: Overview of all compared methods across the 6 evaluation tasks. The notation +Const1 is added to
the methods containing the semantic contribution constraint (Constraint One). The metric given for each task is
the average metric across the entire dataset. Numbers in boldface mark the best performance per task. Multiple
numbers may be in boldface in the same task, if there is no statistically significant difference between them.

meaning, the two should be clustered together.
We use k-means clustering with 1914 clusters (as
many as the pairs of our set) and 99 iterations.

Positive-Negative Similarity Distribution This
task is the original used by Zanzotto et al. (2010),
so we only apply it on the ZZ set. Here, we test
if the distribution of the cosine similarities of the
positive pairs is statistically different from the dis-
tribution of the similarities of the negative pairs:
if it is, it means that the corresponding functions
perform well because they can keep the two cate-
gories apart (see Zanzotto et al. (2010) for more
details). As in the original experiment, the re-
sults show p-values, calculated with the Students t-
test for two independent samples of different sizes:
lower values characterize better models.

4.4 Results

In Table 1 we list all 13 methods compared in this
work and their performance across all evaluation
tasks. To test for statistical significance, the results
were first grouped into categories and were ana-
lyzed using linear mixed effects regression models
with the corresponding conditions (Method and
Constraint) as fixed factors and random intercepts
for the phrases of the dataset.9 P-values were
calculated using the Satterthwaite approximation
of degrees-of-freedom in the R-package lmerTest

9The models further included random slopes for the
within-group factors when this improved the fit of the model,
as determined by LogLikelihood comparisons, using the R-
function anova().

(Kuznetsova et al., 2017). The above process was
done separately for each of the evaluation tasks.

Within the separate categories, the models
showed main effects and interactions of both
Method and Constraint across all tasks. The pro-
posed sd and mod− sd functions (lines 3-4 of Ta-
ble 1) perform statistically the same across tasks:
sd does outperform mod − sd in the Syn task but
the latter outperforms the former in the DistSim
task, so that they exhibit an equal behavior. Con-
cerning the baselines, the methods of addition, av-
erage and combined addition-multiplication (lines
5-8) perform statistically the same across tasks but
heavily outperform the multiplication approach
(contrary to Mitchell and Lapata (2010) but sim-
ilar to Boleda et al. (2013)). The same opera-
tions but with our semantic contribution constraint
(baselines+Const1, lines 9-11) also perform sta-
tistically the same across tasks.

More interesting are the overall results across
categories: here, there is a main effect of Method.
In the Sim task, in all three precision tasks, in
OveNei and in Clus, the proposed sd andmod−sd
together with the baselines+Const1 are statisti-
cally best without any difference between them.
In the Syn task, the sd and the NN10 provide
the statistically best results, with the addition-

10It is not surprising that the NN performs that well in this
task. Since the NN is trained to learn/resemble the target em-
bedding, its similarity to this specific target is higher than to
other words on which it has not been trained. Thus, here it
achieves better accuracy than in other tasks as it’s the relative
similarity to the target vs. to the other words that is measured.
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multiplication+Const1 operation following. For
the DistSim task, mod− sd, the addition+Const1
and average+Const1 as well as the simple base-
lines perform best and all methods outperform
what is reported by Zanzotto et al. (2010).

5 Discussion

The first proposed constraint of this paper, the se-
mantic contribution of heads and modifiers, proves
powerful: the +Const1 addition, average and com-
bined addition-multiplication operations heavily
outperform their counterparts without the con-
straint and come to be the statistically best in 5 of
the 6 tasks, also outperforming the NN and Zan-
zotto et al.’s approach. This confirms that the se-
mantic contribution constraint is indeed beneficial:
it’s the semantic contribution of the phrase compo-
nents that should be considered for the weighting
and not the syntactic role. The fact that this con-
straint boosts simple baselines like the ones pre-
sented here shows the potential in exploring how
it could also boost other existing (deep) models.

On the other hand, the dimensions’ selection
constraint proposed in sd and mod− sd performs
statistically best in 5 of the 6 tasks. They outper-
form the non-compositional baselines (only head
and only mod), showing that they indeed capture
compositionality. They also outperform the stan-
dard baselines, the NN and Zanzotto et al.’s ap-
proach. This result shows the benefits of our pro-
posed functions: selecting only those dimensions
of the semantic modifier that are relevant to the
head, i.e. implementing the intuition of functional
application of one vector onto the other, but rely-
ing on semantic heads and modifiers as opposed to
syntactic ones. Both functions have a heavier pres-
ence of semantic head dimensions than semantic
modifier dimensions due to their composition pro-
cess (see Section 3.2). From this we can conclude
that compositional vectors are more efficient when
more semantic head attributes than semantic mod-
ifier attributes are present. Between the two ap-
proaches there is no apparent difference: sd is bet-
ter in the Syn task and mod− sd in DistSim. Fur-
ther evaluation tasks will have to determine any
performance differences. mod− sd might be able
to capture more information because it combines
the semantic modifier dimensions with the dimen-
sions of the constructed functional vector which
contains the semantic head attributes “dilated” in
the direction of the semantic modifier.

The tasks included in the current evalua-
tion show no real differences between the pro-
posed methods sd and mod − sd and the base-
lines+Const1, which might raise some doubt on
the real value and powerfulness of the dimensions’
selection constraint. However, the goal of this
work was to test the intuition behind this approach
and see whether it can compete with other state-
of-the-art results. In that respect, the results are
promising. Particularly, we expect that the pro-
posed functions can be improved with further fine-
tuning of the dimensions’ selection process to out-
perform the standard baselines. On the contrary,
the baseline operations have less room for im-
provement. We hope that future tasks can show
more clearly the weaknesses and strengths of each
approach. We are particularly interested in test-
ing this approach on other types of phrases, e.g.
verb phrases (VP), to see how our two constraints
generalize. For example, concerning our first con-
straint, for English VPs containing a verb and an
object, we expect all verbs to behave as semantic
heads (and the objects as semantic modifiers) ex-
cept for light verbs, where the objects should be
the semantic heads. In fact, preliminary experi-
menting with VPs shows that both constraints can
be extended to them with promising results.

6 Conclusion

In this paper, we proposed two novel con-
straints for composing linguistically-informed and
intuitively-explainable nominal phrase vectors.
After a thorough evaluation, we showed that these
constraints lead to more expressive phrase vec-
tors, outperforming popular baselines. Other eval-
uation tasks might prove more suitable for show-
ing specific strengths and weaknesses of the pro-
posed constraints. In the future, we wish to ap-
ply our approach to other kinds of phrases, e.g.,
verb phrases, and try to derive a representation for
a whole sentence by iteratively combining the dif-
ferent constituent phrases of the sentence through
the proposed constraints. Additionally, we would
like to train a better semantic contribution classi-
fier and make it openly available for use.
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