@inproceedings{didenko-shaptala-2019-multi,
title = "Multi-headed Architecture Based on {BERT} for Grammatical Errors Correction",
author = "Didenko, Bohdan and
Shaptala, Julia",
editor = "Yannakoudakis, Helen and
Kochmar, Ekaterina and
Leacock, Claudia and
Madnani, Nitin and
Pil{\'a}n, Ildik{\'o} and
Zesch, Torsten",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4426/",
doi = "10.18653/v1/W19-4426",
pages = "246--251",
abstract = "In this paper, we describe our approach to GEC using the BERT model for creation of encoded representation and some of our enhancements, namely, {\textquotedblleft}Heads{\textquotedblright} are fully-connected networks which are used for finding the errors and later receive recommendation from the networks on dealing with a highlighted part of the sentence only. Among the main advantages of our solution is increasing the system productivity and lowering the time of processing while keeping the high accuracy of GEC results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="didenko-shaptala-2019-multi">
<titleInfo>
<title>Multi-headed Architecture Based on BERT for Grammatical Errors Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bohdan</namePart>
<namePart type="family">Didenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Shaptala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ildikó</namePart>
<namePart type="family">Pilán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our approach to GEC using the BERT model for creation of encoded representation and some of our enhancements, namely, “Heads” are fully-connected networks which are used for finding the errors and later receive recommendation from the networks on dealing with a highlighted part of the sentence only. Among the main advantages of our solution is increasing the system productivity and lowering the time of processing while keeping the high accuracy of GEC results.</abstract>
<identifier type="citekey">didenko-shaptala-2019-multi</identifier>
<identifier type="doi">10.18653/v1/W19-4426</identifier>
<location>
<url>https://aclanthology.org/W19-4426/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>246</start>
<end>251</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-headed Architecture Based on BERT for Grammatical Errors Correction
%A Didenko, Bohdan
%A Shaptala, Julia
%Y Yannakoudakis, Helen
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Zesch, Torsten
%S Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F didenko-shaptala-2019-multi
%X In this paper, we describe our approach to GEC using the BERT model for creation of encoded representation and some of our enhancements, namely, “Heads” are fully-connected networks which are used for finding the errors and later receive recommendation from the networks on dealing with a highlighted part of the sentence only. Among the main advantages of our solution is increasing the system productivity and lowering the time of processing while keeping the high accuracy of GEC results.
%R 10.18653/v1/W19-4426
%U https://aclanthology.org/W19-4426/
%U https://doi.org/10.18653/v1/W19-4426
%P 246-251
Markdown (Informal)
[Multi-headed Architecture Based on BERT for Grammatical Errors Correction](https://aclanthology.org/W19-4426/) (Didenko & Shaptala, BEA 2019)
ACL