@inproceedings{miaschi-etal-2019-linguistically,
    title = "Linguistically-Driven Strategy for Concept Prerequisites Learning on {I}talian",
    author = "Miaschi, Alessio  and
      Alzetta, Chiara  and
      Cardillo, Franco Alberto  and
      Dell{'}Orletta, Felice",
    editor = "Yannakoudakis, Helen  and
      Kochmar, Ekaterina  and
      Leacock, Claudia  and
      Madnani, Nitin  and
      Pil{\'a}n, Ildik{\'o}  and
      Zesch, Torsten",
    booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-4430/",
    doi = "10.18653/v1/W19-4430",
    pages = "285--295",
    abstract = "We present a new concept prerequisite learning method for Learning Object (LO) ordering that exploits only linguistic features extracted from textual educational resources. The method was tested in a cross- and in- domain scenario both for Italian and English. Additionally, we performed experiments based on a incremental training strategy to study the impact of the training set size on the classifier performances. The paper also introduces ITA-PREREQ, to the best of our knowledge the first Italian dataset annotated with prerequisite relations between pairs of educational concepts, and describe the automatic strategy devised to build it."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="miaschi-etal-2019-linguistically">
    <titleInfo>
        <title>Linguistically-Driven Strategy for Concept Prerequisites Learning on Italian</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Alessio</namePart>
        <namePart type="family">Miaschi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Chiara</namePart>
        <namePart type="family">Alzetta</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Franco</namePart>
        <namePart type="given">Alberto</namePart>
        <namePart type="family">Cardillo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Felice</namePart>
        <namePart type="family">Dell’Orletta</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Helen</namePart>
            <namePart type="family">Yannakoudakis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Kochmar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Claudia</namePart>
            <namePart type="family">Leacock</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nitin</namePart>
            <namePart type="family">Madnani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ildikó</namePart>
            <namePart type="family">Pilán</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Torsten</namePart>
            <namePart type="family">Zesch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present a new concept prerequisite learning method for Learning Object (LO) ordering that exploits only linguistic features extracted from textual educational resources. The method was tested in a cross- and in- domain scenario both for Italian and English. Additionally, we performed experiments based on a incremental training strategy to study the impact of the training set size on the classifier performances. The paper also introduces ITA-PREREQ, to the best of our knowledge the first Italian dataset annotated with prerequisite relations between pairs of educational concepts, and describe the automatic strategy devised to build it.</abstract>
    <identifier type="citekey">miaschi-etal-2019-linguistically</identifier>
    <identifier type="doi">10.18653/v1/W19-4430</identifier>
    <location>
        <url>https://aclanthology.org/W19-4430/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>285</start>
            <end>295</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linguistically-Driven Strategy for Concept Prerequisites Learning on Italian
%A Miaschi, Alessio
%A Alzetta, Chiara
%A Cardillo, Franco Alberto
%A Dell’Orletta, Felice
%Y Yannakoudakis, Helen
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Zesch, Torsten
%S Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F miaschi-etal-2019-linguistically
%X We present a new concept prerequisite learning method for Learning Object (LO) ordering that exploits only linguistic features extracted from textual educational resources. The method was tested in a cross- and in- domain scenario both for Italian and English. Additionally, we performed experiments based on a incremental training strategy to study the impact of the training set size on the classifier performances. The paper also introduces ITA-PREREQ, to the best of our knowledge the first Italian dataset annotated with prerequisite relations between pairs of educational concepts, and describe the automatic strategy devised to build it.
%R 10.18653/v1/W19-4430
%U https://aclanthology.org/W19-4430/
%U https://doi.org/10.18653/v1/W19-4430
%P 285-295
Markdown (Informal)
[Linguistically-Driven Strategy for Concept Prerequisites Learning on Italian](https://aclanthology.org/W19-4430/) (Miaschi et al., BEA 2019)
ACL