@inproceedings{mizumoto-etal-2019-analytic,
    title = "Analytic Score Prediction and Justification Identification in Automated Short Answer Scoring",
    author = "Mizumoto, Tomoya  and
      Ouchi, Hiroki  and
      Isobe, Yoriko  and
      Reisert, Paul  and
      Nagata, Ryo  and
      Sekine, Satoshi  and
      Inui, Kentaro",
    editor = "Yannakoudakis, Helen  and
      Kochmar, Ekaterina  and
      Leacock, Claudia  and
      Madnani, Nitin  and
      Pil{\'a}n, Ildik{\'o}  and
      Zesch, Torsten",
    booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-4433/",
    doi = "10.18653/v1/W19-4433",
    pages = "316--325",
    abstract = "This paper provides an analytical assessment of student short answer responses with a view to potential benefits in pedagogical contexts. We first propose and formalize two novel analytical assessment tasks: analytic score prediction and justification identification, and then provide the first dataset created for analytic short answer scoring research. Subsequently, we present a neural baseline model and report our extensive empirical results to demonstrate how our dataset can be used to explore new and intriguing technical challenges in short answer scoring. The dataset is publicly available for research purposes."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mizumoto-etal-2019-analytic">
    <titleInfo>
        <title>Analytic Score Prediction and Justification Identification in Automated Short Answer Scoring</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Tomoya</namePart>
        <namePart type="family">Mizumoto</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hiroki</namePart>
        <namePart type="family">Ouchi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yoriko</namePart>
        <namePart type="family">Isobe</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Paul</namePart>
        <namePart type="family">Reisert</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ryo</namePart>
        <namePart type="family">Nagata</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Satoshi</namePart>
        <namePart type="family">Sekine</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kentaro</namePart>
        <namePart type="family">Inui</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Helen</namePart>
            <namePart type="family">Yannakoudakis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Kochmar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Claudia</namePart>
            <namePart type="family">Leacock</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nitin</namePart>
            <namePart type="family">Madnani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ildikó</namePart>
            <namePart type="family">Pilán</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Torsten</namePart>
            <namePart type="family">Zesch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper provides an analytical assessment of student short answer responses with a view to potential benefits in pedagogical contexts. We first propose and formalize two novel analytical assessment tasks: analytic score prediction and justification identification, and then provide the first dataset created for analytic short answer scoring research. Subsequently, we present a neural baseline model and report our extensive empirical results to demonstrate how our dataset can be used to explore new and intriguing technical challenges in short answer scoring. The dataset is publicly available for research purposes.</abstract>
    <identifier type="citekey">mizumoto-etal-2019-analytic</identifier>
    <identifier type="doi">10.18653/v1/W19-4433</identifier>
    <location>
        <url>https://aclanthology.org/W19-4433/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>316</start>
            <end>325</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analytic Score Prediction and Justification Identification in Automated Short Answer Scoring
%A Mizumoto, Tomoya
%A Ouchi, Hiroki
%A Isobe, Yoriko
%A Reisert, Paul
%A Nagata, Ryo
%A Sekine, Satoshi
%A Inui, Kentaro
%Y Yannakoudakis, Helen
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Zesch, Torsten
%S Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F mizumoto-etal-2019-analytic
%X This paper provides an analytical assessment of student short answer responses with a view to potential benefits in pedagogical contexts. We first propose and formalize two novel analytical assessment tasks: analytic score prediction and justification identification, and then provide the first dataset created for analytic short answer scoring research. Subsequently, we present a neural baseline model and report our extensive empirical results to demonstrate how our dataset can be used to explore new and intriguing technical challenges in short answer scoring. The dataset is publicly available for research purposes.
%R 10.18653/v1/W19-4433
%U https://aclanthology.org/W19-4433/
%U https://doi.org/10.18653/v1/W19-4433
%P 316-325
Markdown (Informal)
[Analytic Score Prediction and Justification Identification in Automated Short Answer Scoring](https://aclanthology.org/W19-4433/) (Mizumoto et al., BEA 2019)
ACL