@inproceedings{htut-tetreault-2019-unbearable,
title = "The Unbearable Weight of Generating Artificial Errors for Grammatical Error Correction",
author = "Htut, Phu Mon and
Tetreault, Joel",
editor = "Yannakoudakis, Helen and
Kochmar, Ekaterina and
Leacock, Claudia and
Madnani, Nitin and
Pil{\'a}n, Ildik{\'o} and
Zesch, Torsten",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4449/",
doi = "10.18653/v1/W19-4449",
pages = "478--483",
abstract = "In this paper, we investigate the impact of using 4 recent neural models for generating artificial errors to help train the neural grammatical error correction models. We conduct a battery of experiments on the effect of data size, models, and comparison with a rule-based approach."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="htut-tetreault-2019-unbearable">
<titleInfo>
<title>The Unbearable Weight of Generating Artificial Errors for Grammatical Error Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Phu</namePart>
<namePart type="given">Mon</namePart>
<namePart type="family">Htut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ildikó</namePart>
<namePart type="family">Pilán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we investigate the impact of using 4 recent neural models for generating artificial errors to help train the neural grammatical error correction models. We conduct a battery of experiments on the effect of data size, models, and comparison with a rule-based approach.</abstract>
<identifier type="citekey">htut-tetreault-2019-unbearable</identifier>
<identifier type="doi">10.18653/v1/W19-4449</identifier>
<location>
<url>https://aclanthology.org/W19-4449/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>478</start>
<end>483</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Unbearable Weight of Generating Artificial Errors for Grammatical Error Correction
%A Htut, Phu Mon
%A Tetreault, Joel
%Y Yannakoudakis, Helen
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Zesch, Torsten
%S Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F htut-tetreault-2019-unbearable
%X In this paper, we investigate the impact of using 4 recent neural models for generating artificial errors to help train the neural grammatical error correction models. We conduct a battery of experiments on the effect of data size, models, and comparison with a rule-based approach.
%R 10.18653/v1/W19-4449
%U https://aclanthology.org/W19-4449/
%U https://doi.org/10.18653/v1/W19-4449
%P 478-483
Markdown (Informal)
[The Unbearable Weight of Generating Artificial Errors for Grammatical Error Correction](https://aclanthology.org/W19-4449/) (Htut & Tetreault, BEA 2019)
ACL