@inproceedings{nadeem-etal-2019-automated,
title = "Automated Essay Scoring with Discourse-Aware Neural Models",
author = "Nadeem, Farah and
Nguyen, Huy and
Liu, Yang and
Ostendorf, Mari",
editor = "Yannakoudakis, Helen and
Kochmar, Ekaterina and
Leacock, Claudia and
Madnani, Nitin and
Pil{\'a}n, Ildik{\'o} and
Zesch, Torsten",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4450/",
doi = "10.18653/v1/W19-4450",
pages = "484--493",
abstract = "Automated essay scoring systems typically rely on hand-crafted features to predict essay quality, but such systems are limited by the cost of feature engineering. Neural networks offer an alternative to feature engineering, but they typically require more annotated data. This paper explores network structures, contextualized embeddings and pre-training strategies aimed at capturing discourse characteristics of essays. Experiments on three essay scoring tasks show benefits from all three strategies in different combinations, with simpler architectures being more effective when less training data is available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nadeem-etal-2019-automated">
<titleInfo>
<title>Automated Essay Scoring with Discourse-Aware Neural Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Farah</namePart>
<namePart type="family">Nadeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huy</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mari</namePart>
<namePart type="family">Ostendorf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ildikó</namePart>
<namePart type="family">Pilán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated essay scoring systems typically rely on hand-crafted features to predict essay quality, but such systems are limited by the cost of feature engineering. Neural networks offer an alternative to feature engineering, but they typically require more annotated data. This paper explores network structures, contextualized embeddings and pre-training strategies aimed at capturing discourse characteristics of essays. Experiments on three essay scoring tasks show benefits from all three strategies in different combinations, with simpler architectures being more effective when less training data is available.</abstract>
<identifier type="citekey">nadeem-etal-2019-automated</identifier>
<identifier type="doi">10.18653/v1/W19-4450</identifier>
<location>
<url>https://aclanthology.org/W19-4450/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>484</start>
<end>493</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Essay Scoring with Discourse-Aware Neural Models
%A Nadeem, Farah
%A Nguyen, Huy
%A Liu, Yang
%A Ostendorf, Mari
%Y Yannakoudakis, Helen
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Zesch, Torsten
%S Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F nadeem-etal-2019-automated
%X Automated essay scoring systems typically rely on hand-crafted features to predict essay quality, but such systems are limited by the cost of feature engineering. Neural networks offer an alternative to feature engineering, but they typically require more annotated data. This paper explores network structures, contextualized embeddings and pre-training strategies aimed at capturing discourse characteristics of essays. Experiments on three essay scoring tasks show benefits from all three strategies in different combinations, with simpler architectures being more effective when less training data is available.
%R 10.18653/v1/W19-4450
%U https://aclanthology.org/W19-4450/
%U https://doi.org/10.18653/v1/W19-4450
%P 484-493
Markdown (Informal)
[Automated Essay Scoring with Discourse-Aware Neural Models](https://aclanthology.org/W19-4450/) (Nadeem et al., BEA 2019)
ACL
- Farah Nadeem, Huy Nguyen, Yang Liu, and Mari Ostendorf. 2019. Automated Essay Scoring with Discourse-Aware Neural Models. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 484–493, Florence, Italy. Association for Computational Linguistics.