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Introduction

Welcome to the 6th Workshop on Argument Mining (ArgMining 2019), collocated with ACL 2019 in
Florence, Italy. The ArgMining workshop series is the premier research forum devoted to the mining, the
assessment, and the generation of natural language arguments. Previous editions have been held annually
at ACL (2014, 2016), NAACL (2015), and EMNLP (2017, 2018).

Argument mining, also known as argumentation mining, is an emerging research area of computational
linguistics. At its heart, it involves the automatic identification of argumentative structures in free text,
such as the premises, conclusions, and inference schemes of arguments as well as their interrelations
and counter-considerations. To date, researchers have investigated argument mining on various registers
including legal texts, scientific papers, product reviews, news editorials, Wikipedia articles, persuasive
essays, tweets, and online discussions. Argument mining is tied to stance and sentiment analysis, since
every argument carries a stance towards its topic, often expressed with sentiment. Recently, the quality
assessment of arguments came into focus; it is considered as an important step to bring computational
argumentation to practical impact.

While solutions to basic steps such as component segmentation and classification slowly become mature,
many tasks remain largely unsolved, particularly when facing more open genres and topics. Success in
computational argumentation requires joint efforts integrating NLP technology, theories of semantics and
pragmatics, knowledge of discourse in application domains, artificial intelligence, information retrieval,
argumentation theory, and computational models of argumentation.

Computational argumentation gives rise to various applications of great importance. It provides methods
that can find and visualize the main pro and con arguments on a topic of interest in a corpus — or even
in documents, blogs, and discussions on the web. In instructional and educational contexts, written and
diagrammed arguments can be mined to convey and assess students’ command of course material, while
the retrieval of mined arguments is expected to play a salient role in the emerging field of conversational
search. With IBM’s Project Debater, technology based on computational argumentation recently received
a lot of media attention.

The community around ArgMining is constantly growing. This year’s edition of the workshop had 41
valid submissions (after 27 in 2017 and 32 in 2018), among these 22 full papers, 17 short papers, and two
demo papers. The submissions came from institutions on five continents, 44% of the first authors being
female. Five submissions were withdrawn due to acceptance at other venues, indicating the quality of
submissions. Out of the remaining 36 papers, seven have been selected for oral presentation (19%) and
13 for poster presentation, resulting in an overall acceptance rate of 56%. Thanks to the hard work of
46 program committee members and four additional reviewers, all authors got three reviews on time.

14 full papers, five short papers, and one demo paper are included in the proceedings at hand. We were
delighted to gain Professor Giovanni Sartor and Professor Marco Lippi as keynote speakers, experts on
legal reasoning and its relation to Artificial Intelligence. The ArgMining 2019 workshop program also
featured a best paper award, thankfully sponsored by IBM and selected by an independent committee,
as well as a special event. Both the award and the event are announced on the official workshop website
chaired by Roxanne El Baff: https://argmining19.webis.de.

Benno Stein and Henning Wachsmuth
(ArgMining 2019 co-chairs)
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Abstract

The segmentation of argumentative units is an
important subtask of argument mining, which
is frequently addressed at a coarse granular-
ity, usually assuming argumentative units to be
no smaller than sentences. Approaches focus-
ing at the clause-level granularity, typically ad-
dress the task as sequence labeling at the token
level, aiming to classify whether a token be-
gins, is inside, or is outside of an argumenta-
tive unit. Most approaches exploit highly engi-
neered, manually constructed features, and al-
gorithms typically used in sequential tagging
– such as Conditional Random Fields, while
more recent approaches try to exploit manu-
ally constructed features in the context of deep
neural networks. In this context, we examined
to what extend recent advances in sequential
labelling allow to reduce the need for highly
sophisticated, manually constructed features,
and whether limiting features to embeddings,
pre-trained on large corpora is a promising ap-
proach. Evaluation results suggest the exam-
ined models and approaches can exhibit com-
parable performance, minimising the need for
feature engineering.

1 Introduction

Argument mining involves the automatic discov-
ery of argument components (such as claims,
premises, etc.) and the argumentative relations
(i.e. support, attack, etc.) among these com-
ponents in texts. Primarily aiming to extract ar-
guments from texts in order to provide struc-
tured data for computational models of argu-
ment and reasoning engines (Lippi and Torroni,
2015a), argument mining has additionally the po-
tential to support applications in various research
fields, such as opinion mining (Goudas et al.,
2015), stance detection (Hasan and Ng, 2014),
policy modelling (Florou et al., 2013; Goudas
et al., 2014), legal information systems (Palau and

Moens, 2009), fact checking (Naderi and Hirst,
2018), etc.

The identification of argumentative discourse
structures typically consists of two main tasks:
1) the identification of the locations in text and
the type of the argument components, and 2) the
identification of how these argument components
related to each other (Persing and Ng, 2016). As
a result, argument mining is usually addressed
as a pipeline of several sub-tasks. Typically the
first sub-task is the separation between argumen-
tative and non-argumentative text units, which can
be performed at various granularity levels, from
clauses to several sentences, usually depending on
corpora characteristics. Detection of argumenta-
tive units (AU)1, as discussed in Section 2, is typ-
ically modeled as a fully-supervised classification
task, either a binary one, where units are separated
in argumentative and non-argumentative ones with
argumentative ones to be subsequently classified
in major claims, claims, premises, etc. as a sec-
ond step, or as a multi-class one, where identifi-
cation of argumentative units and their classifica-
tion into claims and premises are performed as a
single step. Typically the granularity of this task
is coarse, with most approaches considering sen-
tences as the smallest argumentative unit (Florou
et al., 2013; Moens et al., 2007; Song et al., 2014;
Swanson et al., 2015), although some works fo-
cused on the most difficult task of detecting units
at the clause level (Park and Cardie, 2014; Goudas
et al., 2014, 2015; Sardianos et al., 2015; Stab,
2017; Ajjour et al., 2017; Eger et al., 2017). Ac-
cording to a recent survey (Lippi and Torroni,
2015a), the performance of proposed approaches
depends on highly engineered and sophisticated,
manually constructed, features.

Approaches focusing at the clause-level granu-
1Also known as “Argumentative Discourse Units –

ADUs” (Peldszus and Stede, 2013).
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larity, typically address the task as sequence label-
ing at the token level, aiming to classify whether
a token begins, is inside, or is outside of an argu-
mentative unit through the IOB format (Ramshaw
and Marcus, 1995). Most of the approaches em-
ploy Conditional Random Fields (CRFs) (Lafferty
et al., 2001) with hand-crafted features (Goudas
et al., 2014), as CRFs are the prominent and most
reliable algorithm for many sequential labelling
tasks (Zeng et al., 2017), and have been applied
to a wide range of segmenting tasks, from named-
entity recognition (McCallum and Li, 2003) and
shallow parsing (Sha and Pereira, 2003), to aspect-
based sentiment analysis (Patra et al., 2014). Se-
quence labeling algorithms take as input a set of
features for each token in a sequence (such as a
sentence) and learn to predict an optimal sequence
of labels for all tokens in the input sequence, while
performance depends on the provided (typically
manually engineered features) and how well these
features can help the model predicting the like-
lihood of every label in the sequence. However,
as deep learning is slowly replacing CRFs for se-
quence labelling (i.e. (Ajjour et al., 2017)), it is
interesting to examine whether these hand-crafted
features are still important, or comparative levels
of performance can be achieved without them.

In this paper we examine whether a “CRF-
inspired” neural model without the hand-crafted
features, can be applied to the task of argumen-
tative unit segmentation at the clause level, and
whether its performance is comparable to ap-
proaches exploiting such features. In addition,
we study whether contextualised word represen-
tations can help in this task, and provide an alter-
native to hand-crafted features. These can be re-
flected in the following two questions:

1. Can approaches that do not use manually en-
gineered features achieve performances com-
parable to approaches that exploit such fea-
tures?

2. Can contextualised word representations
(pre-trained in large corpora) replace manu-
ally engineered features in argument mining?

The motivation behind the work presented in
this paper originates from the advances performed
in the state of art of named-entity recognition by
Bidirectional LSTM-CRF Models for Sequence
Tagging (Huang et al., 2015; Ma and Hovy, 2016),
a variation of Long Short-Term Memory (LSTM)

based models with a decoding layer that considers
relations between neighbouring labels and jointly
decodes the optimal sequence of labels for a given
input sequence (Ma and Hovy, 2016), using a
Conditionally Random Field. Recognising a sim-
ilar evolution pattern also in the area of argument
mining segmentation – starting with CRF’s and
manually constructed features (Park and Cardie,
2014; Goudas et al., 2014, 2015; Stab, 2017), then
employing word embeddings as features in CRFs
(Sardianos et al., 2015) and subsequently apply-
ing bi-directional LSTMs (Ajjour et al., 2017) on
manually engineered features – poses the ques-
tion if a similar advancement can be achieved by
introducing the currently missing pieces (LSTM-
CRF models or contextualised word representa-
tions such as (Peters et al., 2018)), in an attempt
to eliminate – or reduce the need for – manually
engineered features.

In order to approach our research questions we
have used the second version of the Argument An-
notated Essay Corpus (Stab, 2017), a collection
of 402 essays, which has been manually anno-
tated with major claims (one per essay), claims
and premises at the clause level. In addition, the
corpus contains manual annotations of argumen-
tative relations, where the claims and premises are
linked, while claims are linked to the major claim
either with a support or an attack relation. We have
applied LSTM-CRF models (using the implemen-
tation reported in (Akbik et al., 2018)) employ-
ing various word embeddings (including contex-
tualised word representations like “ELMo” (Pe-
ters et al., 2018), “Flair” (Akbik et al., 2018) and
“BERT” (Devlin et al., 2018)). Evaluation results
suggest that all studied approaches are comparable
or slightly better to the current state of art.

2 Related work

Almost all argument mining frameworks proposed
so far employ a pipeline of stages, each of which
is addressing a sub-task of the argument mining
problem (Lippi and Torroni, 2015a). The segmen-
tation of text into argumentative units is typically
the first sub-task encountered in such an argument
mining pipeline, aiming to segment texts into ar-
gumentative and non-argumentative text units (i.e.
segments that do contain or do not contain argu-
ment components, such as claims or premises).
The granularity of argument components is text-
dependant. For example, in Wikipedia articles
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studied in (Rinott et al., 2015), argument compo-
nents spanned from less than a sentence to more
than a paragraph, although 90% of the cases was
up to 3 sentences, with 95% of components being
comprised of whole sentences.

Several approaches address the identification of
argumentative units at the sentence level, a sub-
task known as “argumentative sentence detection”,
which typically models the task as a binary clas-
sification problem. Employing machine learn-
ing and a set of features representing sentences,
the goal is to discard sentences that are not part
(or do not contain a component) of an argument.
As reported also by Lippi and Torroni (2015a),
the vast majority of existing approaches employ
“classic, off-the-self” classifiers, while most of
the effort is devoted to highly engineered features.
A plethora of learning algorithms have been ap-
plied on the task, including Naive Bayes (Moens
et al., 2007; Park and Cardie, 2014), Support Vec-
tor Machines (SVM) (Mochales and Moens, 2011;
Rooney et al., 2012; Park and Cardie, 2014; Stab
and Gurevych, 2014; Lippi and Torroni, 2015b),
Maximum Entropy (Mochales and Moens, 2011),
Logistic Regression (Goudas et al., 2014, 2015;
Levy et al., 2014), Decision Trees and Random
Forests (Goudas et al., 2014, 2015; Stab and
Gurevych, 2014). There is also a limited num-
ber of approaches addressing the task in a semi-
supervised or unsupervised manner, such as (Fer-
rara et al., 2017).

The identification of argumentative units at the
clause level has been less studied than its more
coarse counterpart. (Park and Cardie, 2014) has
exploited n-grams and a large number of ad-
ditional, manually crafted, binary (denoting the
presence of features) and numeric (containing
counts) features in a supervised manner with Sup-
port Vector Machine as classifier, achieving a
macro-averaged F1 = 68.99% on a corpus man-
ually annotated by the authors. In (Goudas et al.,
2014, 2015) the authors have examined segmen-
tation both at sentence and clause level, for the
Greek language, using a corpus manually anno-
tated by the authors. They have exploited both fea-
tures from previous approaches and features pro-
posed by the authors, achieving F1 = 42.37%, as
measured by “conlleval.pl” (taking into account
correct sequences and not only labels at the to-
ken level). The same Greek corpus has been used
in (Sardianos et al., 2015), where word2vec em-

beddings (Mikolov et al., 2013) have been used as
features in a supervised setting using CRFs, com-
bined with part-of-speech tags and a small lexi-
con with cue phrases, to report a small increase
in performance (F1 = 32.12%) over the baseline
(F1 = 27.04%).

CRFs have been also used in (Stab, 2017),
along with an extensive set of highly engineered
features, including structural, syntactic, lexico-
syntactic and probabilistic features. The approach
has been evaluated on the second version of the
Argument Annotated Essay Corpus (the same cor-
pus has been used for evaluation in this work),
created by the authors, achieving macro-averaged
F1 = 86.70%. Similar features (with the addi-
tion of pragmatic features) have been exploited in
(Ajjour et al., 2017) using a bidirectional LSTM
model as classifier in a supervised setting, achiev-
ing macro-averaged F1 = 88.54% on the second
version of the Argument Annotated Essay Corpus,
with lower scores on two other corpora. In in-
teresting aspect of this work is the out-of-domain
evaluation, performing evaluations on different
corpora from the ones used for training. Deep neu-
ral networks have been also employed by (Eger
et al., 2017), using bidirectional LSTM-CRF mod-
els in a supervised setting, as an end-to-end sys-
tem. Framing argument mining as a sequence tag-
ging at the token level, they learn simultaneously
four different sets of labels, encoding both seg-
mentation of argumentative units, their types and
their relations. The approach has been evaluated
on the second version of the Argument Annotated
Essay Corpus (the same corpus has been used for
evaluation in this work) achieving F1 = 69.49%.

In (Persing and Ng, 2016) the authors propose
a rule-based approach, with manually constructed
rules applied on top of syntactic trees, achiev-
ing a performance of 92.1% on the first version
of the Argument Annotated Essay Corpus (Stab
and Gurevych, 2014). In (Lawrence et al., 2014)
the authors propose a two-stage approach: Dur-
ing the first stage text is segmented into proposi-
tions using two Naive Bayes classifiers (Nir Fried-
man and Goldszmidt, 1997) with simple features
(words, lengths and a sliding window of three to-
kens) in a supervised setting. Then, as a second
step, propositions are scored based on their simi-
larities to document topic retrieved through Latent
Dirichlet Allocation (LDA) and their distances, to
decide whether they constitute an argumentative
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unit or not.

3 Data

For our experiments, we have used the second
version of the Argument Annotated Essay Corpus
(Stab, 2017; Eger et al., 2017; Stab and Gurevych,
2017), which contains 402 student essays written
in response to controversial topics. The corpus has
been manually annotated with major claims (one
per essay), claims and premises at the clause level.
In addition, the corpus contains manual annota-
tions of argumentative relations, where the claims
and premises are linked, while claims are linked
to the major claim either with a support or an at-
tack relation. Essays are on average 370 tokens
long, while most of the tokens (∼ 70%) are part
of an argumentative unit. The corpus is split into
train and test sets at the essay level, provided by
the authors. We have converted the corpus into the
CoNLL token-based sequence tagging format (us-
ing the tools provided by the “BRAT” annotation
toolkit) and we extracted a small development set
(< 10%) from the training set randomly, with the
help of “scikit-learn” toolkit.

4 Models

Following the typical setting in argumentative unit
segmentation at the clause level, we are going to
also frame the task as a sequence labelling clas-
sification problem. In sequential labelling the la-
bel of an instance does not depend only on the
instance itself, but also depends on the instances
previously seen. A natural choice for sequence
labelling are recurrent neural networks (RNNs),
which consider “hidden” states computed from
previous points in time (instances already classi-
fied) during classification. For our experiments we
have chosen LSTMs (Hochreiter and Schmidhu-
ber, 1997), a type of RNNs able to learn long-term
dependences, as their structure allows them to con-
trol how much information is shared across points
in time.

However, a single LSTM is able to have access
to a single context (typically to the left context
of a token) when assigning a label. Bidirectional
LSTMs employ two separate LSTM layers, look-
ing at the input from opposite directions, while
their output is concatenated into a single vector.
Finally, in order to reflect all CRF capabilities,
and especially its ability to assign labels taking
into account contextual dependencies from all tags

in a sequence, a CRF network can be combined
with an LSTM or a bidirectional LSTM to form
an LSTM-CRF (or bi-LSTM-CRF model) (Huang
et al., 2015), which can use features from all in-
stances in a sequence (past and future) for assign-
ing a label to an instance (Fig 1).

Figure 1: A BI-LSTM-CRF model. (Huang et al.,
2015)

4.1 Argument Mining as Sentence Labelling

In a simple scenario, argumentative unit identifica-
tion can be performed at the sentence level, where
labeling consists in distinguishing between sen-
tences that are argumentative units (y = au) and
sentences that are not argumentative units (y =
au).

4.2 Argument Mining as Sequence Labelling

In a more articulated scenario, argumentative unit
identification must decide not only whether a sen-
tence contains an argumentative unit, but in addi-
tion to identify the exact words that represent each
argumentative unit within each sentence. Framing
this task as a sequence labelling task, each token
is assigned a label from y, where y = {(b, t) | b ∈
{B, I,O}, t ∈ {au}}.

4.3 Embeddings

As input to the aforementioned model, we are go-
ing to use dense representations, and more specifi-
cally pre-trained word embeddings, such as GloVe
(Pennington et al., 2014). Depending on the way
word embeddings were generated and the infor-
mation they represent, word embeddings can be
seen as a form of transfer learning, providing a
model additional information, typically acquired
from a larger corpus than a training dataset for
a task. In addition to these embeddings, we
are going to examine more recent deep contextu-
alised word representations, such as “ELMo” (Pe-
ters et al., 2018), “Flair” (Akbik et al., 2018) and
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Number of tokens
Part # Documents B-Arg I-Arg O-Arg Total Average
Train + Development 322 4,823 75,657 38,195 118,675 368.56
Test 80 1,266 18,837 9,442 29,545 369.31

Table 1: Number of documents, tokens per class, and average number of tokens per document.

“BERT” (Devlin et al., 2018). These represen-
tations are able to model “both characteristics of
word usage (e.g. syntax and semantics) and how
these uses vary across linguistic contexts (i.e. to
model polysemy)” (Peters et al., 2018). These rep-
resentations assign a different vector to each word
based on its context, in contrast to embeddings like
GloVe that assign the same vector to a word, irre-
spectively of context.

5 Experiments

5.1 Argument Mining as Sentence Labelling

Using the corpus described in Section 3, we have
applied four classifiers to the task of classifying a
sentence as argumentative or not. Using as only
features the GloVe2 vectors for each token in a
sentence, we have applied Convolutional Neural
Networks (CNNs) the following implementation,
BI-LSTM-CRF, and bidirectional Sentence-State
LSTMs (S-LSTMs) (Zhang et al., 2018)3. All ap-
proaches involve the usage of non-contextualised
embeddings (GloVe), keeping the most frequent
15,000 words in the corpus, following the train-
ing details as described in (Zhang et al., 2018).
All models are trained using SGD with no mo-
mentum (with a mini-batch size of 32), clipping
gradients at 5, for a maximum 40 epochs. A sim-
ple learning rate annealing method is employed in
which we halve the learning rate if training loss
does not fall for 5 consecutive epochs, initialising
learning rate to 10−3. The hidden states per-layer
was set to 300, and variational dropout was used.
The number of hidden layers was fine-tuned in the
range 1 − 8, and model selection was performed
by choosing the model with the best accuracy on
the development set. The split provided by the au-
thors of the corpus regarding the training and test
sets was used, while a small development set was
extracted from the training set, containing 21 es-

2Wikipedia 2014 + Gigaword 5, 6B tokens, 400K vocab-
ulary, uncased, 300 dimensions.

3We have used the following implementation for
CNNs, LSTMs and S-SLTMs: https://github.com/
leuchine/S-LSTM

says4. Regarding stability and reproducibility of
results, we have used 20195 as the seed value. The
aforementioned approaches were compared to the
“BERT” (Devlin et al., 2018) contextual embed-
dings6, using a single feed-forward layer on top
of the embeddings, with a hidden layer equal to
the size of the embeddings (768)7. Minimal fine-
tuning has been performed, allowing only a single
epoch with mini-batch size of 32 and a learning
rate equal to 2e−5.

Embedding Architecture Accuracy
GloVe CNN 0.8391
GloVe LSTM 0.8488
GloVe S-LSTM 0.8619
BERT Feed Forward 0.8874

Table 2: Argument Mining as Sentence Labelling:
Evaluation Results.

Our experiment results are summarised in Ta-
ble 2. While BERT embeddings (even with mini-
mal fine-tuning of a single hidden layer) have out-
performed all other approaches, traditional word
embeddings (“GloVe” + S-LSTM) may still be
useful as their performance is still very close to
BERT, while employing 6 Bi-S-LSTM-CRF lay-
ers, with a window of 5 tokens, and after 15 epochs
of fine-tuning to the task.

5.2 Argument Mining as Sequence Labelling

For our second experiment, which combines the
identification of argumentative units with their lo-
calisation as textual segments, we have employed

4The essays randomly selected for the development set
are: 13, 38, 41, 115, 140, 152, 156, 159, 162, 164, 201, 257,
291, 324, 343, 361, 369, 371, 387, 389, 400.

5The same seed value, 2019, has been used for all experi-
ments performed in this paper.

6We have adapted the implementation that can be found
here: https://colab.research.google.com/
github/google-research/bert/blob/master/
predicting_movie_reviews_with_bert_on_
tf_hub.ipynb

7The used embeddings can be found at: https:
//tfhub.dev/google/bert_uncased_L-12_
H-768_A-12/1
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an end-to-end system that utilises a BI-LSTM-
CRF architecture with 2 layers, with each layer
employing 256 hidden nodes. This model has been
trained and evaluated with a series of traditional
“(GloVe”, character embeddings) and contextual
embeddings (“ELMo”, “Flair”, and “BERT”). All
experiments we have used the “Flair”8 framework.
Fine-tunning was performed for a maximum of
150 epochs, using SGD with a mini-batch size of
32,and simulated annealing, with a starting learn-
ing rate of 0.1. The same random seed (2019) was
used for all experiments.

We report the macro F-score as an evaluation
measure, since this allows for a comparison to
related work. The macro F1-score considers all
the classes to be equally important, without taking
into consideration the number of instances each
class has. (The distribution of classes in the corpus
is shown in Table 1.)

5.2.1 Comparison with previous work

Features Model Macro F1

All (Semantic+Syntactic SVM 61.40
+Structural+Pragmatic) CRF 79.16
(Ajjour et al., 2017) BI-LSTM 88.54
All
(Stab, 2017) CRF 86.70
GloVe + Character BI-LSTM-CRF 85.92
GloVe + Character BI-LSTM-CRF 88.17
+ Flair
ELMo BI-LSTM-CRF 88.62
BERT BI-LSTM-CRF 89.31
GloVe + Flair BI-LSTM-CRF 90.13
+ BERT
GloVe + Flair BI-LSTM-CRF 87.42
+ ELMo + BERT

Table 3: Argument Mining as Sequence Labelling:
Evaluation Results.

In order to enable comparison with existing ap-
proaches, we have tried to imitate the experimen-
tal settings found in (Stab, 2017) and (Ajjour et al.,
2017). Table 3 shows the results of the approaches
presented in (Ajjour et al., 2017) in the upper part
of the table, followed by the best overall result
presented in (Stab, 2017), including all features
(semantic, syntactic and structural) and the CRF
classifier. Both approaches employ a large number

8https://github.com/zalandoresearch/
flair

of highly engineered and sophisticated, manually
constructed, features. Finally, in the lower part of
the table, we report our results of the BI-LSTM-
CRF model with the various tested embeddings.

From Table 3 it can be seen that almost all
embeddings (especially the contextual ones) out-
perform the approaches with manually engineered
features (Ajjour et al., 2017; Stab, 2017), with the
combination of contextual embeddings achieving
new state-of-art (MacroF1 = 90.13) on the Es-
says v2.0 corpus, especially when considering the
absence of manually constructed features.

5.3 Error Analysis
We analysed the results obtained with the
GloVe+Flair+BERT experiment. The test dataset
contains 1448 annotated sentences, where 1,178
sentences were correctly annotated, while 270 sen-
tences were erroneously annotated by our model.
According to the confusion matrix, the two ma-
jor sources of errors are 1767 “O” tokens erro-
neously classified as “I-Arg”, and 829 “I-Arg” er-
roneously classified as “O”. The majority of the er-
rors (104 sentences) were sentences that the model
erroneously annotated as containing argumenta-
tive components, while these sentences did not
contain any argumentative component according
to the gold annotation. Some examples of such
sentences are displayed in the following list (an-
notated segments by the model are highlighted):

1. In spite of this, the disadvantages of the pro-
motion of a universal language cannot be de-
nied.

2. It is obvious that the benefits of the Internet
undoubtedly outweigh its disadvantages.

3. It would be highly unpractical to ask people
to adopt a simpler way of life.

4. Some people claim that without this pun-
ishment our lives would be less secure and
crimes of violence would increase.

5. It is evident that technology promotes econ-
omy.

The second most important source of errors,
are sentences containing argumentative units that
were not annotated as such by our model. 43 sen-
tences belong in this category, while some exam-
ples are shown as follows:

1. However, it is not sufficient in itself.
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2. Some people claim that the prevalent of En-
glish brings a great number of benefits for
people.

3. In the modern world, computers are used ev-
erywhere.

4. There is no end to the evolution of computers.

5. Many people hold the opinion that past be-
haviour determines the future actions, which
could be the main reason to support the idea
of revealing the record to the jury.

The rest of the errors (123 sentences in total)
are various errors, like two argumentative units
merged in one (errors by our model in red):

1. For instance , some Asians are seeking indi-
vidualism, previously denied by many Asian
countries, due to the fact that they have grad-
ually identified with such values expressed in
American movies, which are imported by the
governments as a result of the proliferation of
English.

2. First and foremost, sports events are good
chances for excellent athletes to meet and
learn valuable experiences from one another.
so that they can improve their results, break
records and bring victories to their own coun-
tries.

Finally, in some cases, our model missed the be-
ginning of an argumentative unit (in red the part
not annotated by our model):

1. From personal level, it fosters a sense of un-
fairness between the older and younger gen-
erations.

2. From social perspective, massively forcing
the early retirement would be one of financial
burden to the local government.

5.4 Discussion
Evaluation results suggest that omitting highly en-
gineered, manually crafted features, and replacing
them with embeddings (pre-trained on large cor-
pora and possibly exploiting multiple sources of
information), is a promising approach and a viable
alternative.

Research Question 1: Can approaches that do
not use manually engineered features achieve per-
formances comparable to approaches that exploit
such features?

Evaluation results suggest that a large part of
the information provided by the plethora of manu-
ally constructed features can be substituted with a
fairly standard architecture and word embeddings,
especially contextualised embeddings that can be
tuned to the task at hand, like the contextualised
word representations ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018). Further optimi-
sation is of course possible (especially with re-
spect to the architectures on top of embeddings,
the number of layers, and the fine-tune of the
many hyper-parameters associated with the em-
ployed neural models). However, there are some
limiting factors, mainly the absence of a develop-
ment set in the corpus used for evaluation, and the
computational requirements of the models, espe-
cially in the case of contextualised word embed-
dings.

Research Question 2: Can contextualised
word representations replace manually engineered
features?

Evaluation results are promising, especially
since the examined approaches have achieved a
small increase over the current state-of-art. How-
ever, the examined approaches have not exceeded
significantly the current state-of-art, suggesting
that manually engineered features are still relevant
and significant at least for this task, the segmenta-
tion of argumentative units at the clause level. One
of the findings in (Ajjour et al., 2017) is that the
semantic features appear to be the most significant
features, achieving the highest F-scores, an obser-
vation that seems to hold also in our experiments,
as reverting to embeddings that enhance seman-
tic modelling (through implicit word sense disam-
biguation performed based on contextual informa-
tion) seems to provide a significant increase in per-
formance. At the same time, the performance dif-
ference with the CRF exploiting the manually con-
structed features (Stab, 2017) is small, suggesting
that removing the highly engineered features may
have a small penalty in performance, at least for
the approach of (Stab, 2017).

6 Conclusion

The segmentation of argumentative units is an
important subtask of argument mining, which
is frequently addressed at a coarse granularity,
usually assuming argumentative units to be no
smaller than sentences. Approaches focusing at
the clause-level granularity, typically address the
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task as sequence labeling at the token level, aiming
to classify whether a token begins, is inside, or is
outside of an argumentative unit through the IOB
format (Ramshaw and Marcus, 1995). Most ap-
proaches exploit highly engineered, manually con-
structed features, and algorithms typically used
in sequential tagging – such as CRFs (Park and
Cardie, 2014; Goudas et al., 2014, 2015; Stab,
2017), while more recent approaches try to ex-
ploit manually constructed features in the con-
text of deep neural networks (Ajjour et al., 2017;
Eger et al., 2017). In this context, we examined
to what extend recent advances in sequential la-
belling and contextualised word embeddings al-
low to reduce the need for manually constructed
features, and whether limiting features to embed-
dings, pre-trained on large corpora is a promising
approach. Evaluation results suggest the exam-
ined models and approaches can exhibit compara-
ble performance, minimising the need for feature
engineering.

Regarding directions for further research, there
are several axes that can be explored. Evalua-
tion on more corpora will provide enhanced in-
sights about the performance of the examined ap-
proaches on different document types. At the
same time, there is a significant optimisation po-
tential, especially in hyper-parameter tuning of
the employed algorithms, provided that a suitable
development set is available, and the computa-
tional requirements of some models (especially
the ones employing contextualised word represen-
tation) are significantly reduced in order to consti-
tute experimentation more tractable and practical.
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Abstract
We present a model to tackle a fundamental
but understudied problem in computational ar-
gumentation: proposition extraction. Propo-
sitions are the basic units of an argument and
the primary building blocks of most argument
mining systems. However, they are usually
substituted by argumentative discourse units
obtained via surface-level text segmentation,
which may yield text segments that lack se-
mantic information necessary for subsequent
argument mining processes. In contrast, our
cascade model aims to extract complete propo-
sitions by handling anaphora resolution, text
segmentation, reported speech, questions, im-
peratives, missing subjects, and revision. We
formulate each task as a computational prob-
lem and test various models using a corpus of
the 2016 U.S. presidential debates. We show
promising performance for some tasks and dis-
cuss main challenges in proposition extraction.

1 Introduction

Most argument mining models for identifying the
argumentative structure of a text build upon ele-
mentary text spans that serve argumentative func-
tions, such as premise and conclusion. In argu-
mentation theory, it is commonly accepted that
these building blocks are propositions (Black-
burn, 2016), i.e., statements that are either true
or false. Despite the foundational role of propo-
sitions, however, proposition extraction from text
has been little studied in computational argumen-
tation. Instead, most models rely on argumentative
discourse units (ADUs) obtained by surface-level
text segmentation (Stede et al., 2016; Al Khatib
et al., 2016). In what follows, we discuss limita-
tions of ADUs that potentially impinge upon sub-
sequent argument mining processes, and then de-
scribe our approach.

One limitation of ADUs is that they may lack
important semantic information, such as the ref-

erents of anaphors and the subject of an incom-
plete sentence, necessary for subsequent argu-
ment mining steps. For example, for two consec-
utive text segments Alice complained to Bob and
He is upset, if we do not know he refers to Bob, it
would be confusing whether the first segment sup-
ports the second or vice versa. In another exam-
ple, suppose Alice was faithful to Bob, keeping the
secret is split into two propositions, each associ-
ated with the main clause and the adverbial partici-
ple, respectively. While mere text segmentation
leaves the subject of the participle (Alice) miss-
ing, tracing and reconstructing the subject makes
it clear that the participle supports the main clause.
As illustrated in these examples, anaphora reso-
lution and subject reconstruction recover seman-
tic information that has potential benefits for argu-
ment mining systems.

Moreover, ADUs may completely miss implicit
propositions. For instance, questions and impera-
tives do not convey explicit propositions, but they
are important argumentative components that of-
ten imply propositional content in dialogical ar-
gumentation. Suppose an arguer asks, why would
you waste your money on tax?, and someone re-
sponds, tax is a waste of money. It is not straight-
forward for an argument mining system to tell
whether the response agrees or disagrees with the
arguer, without knowing what is implied by the
question. Implicit propositions occur in reported
speech as well. Suppose an arguer says, the doctor
said we need more magnesium. The arguer is not
only claiming the report event having happened,
but also bringing the content of the doctor’s speech
as a proposition into the argumentation structure
or even may be asserting it using authority. These
examples show the significance of recovering im-
plicit propositions for argument mining systems.

To overcome these limitations, we present a
cascade model that aims to extract propositions
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from argumentative dialogues, with important se-
mantic information and implicit propositional con-
tent recovered. Our model consists of 7 mod-
ules, namely, anaphora resolution, locution extrac-
tion, reported speech, question, imperative, sub-
ject reconstruction, and revision (Figure 2). For
each module, we formulate the task as a compu-
tational problem and test various models to solve
it, except for the question and imperative mod-
ules, for which we present experimental sketches.
Our analyses and evaluation are based on the tran-
scripts of the 2016 U.S. presidential debates and
reaction on social media that are manually anno-
tated with propositions (Visser et al., 2019). Our
contributions are three-fold.

1. We introduce the problem of proposition ex-
traction as seven tasks.

2. We present various models to tackle each task
and evaluate performance.

3. We analyze challenges facing our computa-
tional methods and suggest future directions.

For the remainder of the paper, we first review
prior work on ADU segmentation and a theoretical
framework for obtaining propositions from ADUs
(§2). We then explain the annotated data of propo-
sitions (§3). Next, we describe our cascade model
(§4) and formulation of each task, along with ex-
periments (§5). We conclude the paper by dis-
cussing the challenges and future directions (§6).

2 Background

In computational argumentation, the basic unit of
an argument is often called an argumentative dis-
course unit (ADU). In this section, we first review
how existing studies define and obtain ADUs from
text, and then some theoretical framework to ob-
tain propositions from ADUs.

2.1 From Text to ADUs

In most studies, ADUs are obtained via text seg-
mentation. While some studies leave the choice of
the boundary of an ADU to the annotator’s judg-
ment (Stab and Gurevych, 2014), many studies
employ a set of syntactic rules as a basis. For in-
stance, an ADU can be as fine-grained as a phrase
that plays a discrete argumentative function (Stede
et al., 2016). In other cases, an ADU may be a
clause (Peldszus and Stede, 2015) or a series of
clauses that must include a subject, a verb, and an
object if necessary (Al Khatib et al., 2016).

Based on annotated ADUs, some studies have

If I'm our nominee, how is Hillary Clinton gonna lecture me about living paycheck 
to paycheck? I was raised paycheck to paycheck.

RUBIO: If I'm our nominee, how is 
Hillary Clinton gonna lecture me 
about living paycheck to paycheck

RUBIO: I was raised paycheck to 
paycheck

If RUBIO is our nominee, CLINTON 
cannot lecture RUBIO about living 
paycheck to paycheck

RUBIO was raised paycheck to 
paycheck

Assertive 
Questioning

Asserting

Arguing Default TransitionDefault Inference

Figure 1: A snippet of the US2016 corpus. The top text
is the original utterance. The blue boxes on the right are
locutions, which are also highlighted with green on the
utterance. The blue boxes on the left are propositions
anchored in the locutions, via illocutionary acts (yellow
boxes).

proposed methods for automatically segmenting
ADUs using machine learning. This task is com-
monly formulated as tagging each word in the text
as either the beginning, inside, or outside of an
ADU (BIO tagging). The tagging has been incor-
porated into an end-to-end argument mining (Eger
et al., 2017) or conducted separately on various
domains (Ajjour et al., 2017). Instead of tagging,
a retrieval approach has also been used, where
candidate ADUs are generated and the best is re-
trieved (Persing and Ng, 2016).

All these approaches to ADU segmentation
share most of the concerns mentioned in Section 1.
For better-informed argument mining, we need to
go further to obtain propositions from ADUs, and
thus a relevant framework will be discussed in the
following section.

2.2 From ADUs to Propositions
Following Speech Act Theory (Austin, 1962;
Searle, 1969), the connection between text seg-
ments and propositions can be modeled as illocu-
tionary acts: the application of particular commu-
nicative intentions to propositional contents – e.g.,
asserting that a proposition is true, or questioning
whether it is true. Focusing on argumentatively
relevant speech acts (van Eemeren and Grooten-
dorst, 1984), Inference Anchoring Theory (IAT)
(Reed and Budzynska, 2011) explains how propo-
sitional contents and the argumentative relations
between them are anchored in the expressed locu-
tions by means of illocutionary connections.

IAT has been applied to annotate argumentative
dialogues of various kinds, including the corpus
used in this paper (Section 3). IAT annotation
comprises, amongst other things, segmenting the
original text into locutions1, identifying the illo-

1Analogous to ADUs. We use the terms interchangeably.

12



Locution1

Y

SpeechIdentification Speech

N

Declarative

Revision

Propositions

Y

N

DeclarativeImperativeTransformY

QuestionTransform

N

Locution2

LocutionExtraction

IsReportedSpeech?

IsQuestion?

IsImperative?

AnaphoraResolution

Anaphora-resolved utterance

Utterance of a speaker

SubjectReconstruction

Alice: Bob stopped by my office and complained, ``Why is the company not launching 
the new service?'' I think I have explained to him already.
Bob stopped by Alice's office and complained, ``Why is the company not launching 
the new service?'' Alice think Alice have explained to Bob already.

[L1] Bob stopped by Alice's office and [L2] complained, ``Why is the company not 
launching the new service?'' Alice think [L3] Alice have explained to Bob already.

[L2] complained, ``Why is the company not launching the new service?''

[L2'] The company should launch the new service

[L2] Bob complained, ``Why is the company not launching the new service?''

[L3] Alice has explained to Bob already

[L1] Bob stopped by Alice's office  [L2] Bob complained, ``Why is the company not launching the new service?''

[L2'] The company should launch the new service  [L3] Alice has explained to Bob already

Figure 2: Cascade model of proposition extraction. The input is each utterance, blue boxes are individual
(sub)modules and orange circles are the outputs of the modules. We made up the utterance used in the figure
in order to cover the functions of most modules.

cutionary force instantiated by the locution, and
reconstructing its propositional content (an exam-
ple snippet shown in Figure 1). Each locution
generally conveys a propositional content. Con-
juncts conjoined by a conjunction and conditional
clauses may be separated if they each fulfill a dis-
crete argumentative function. In addition, punctu-
ation, discourse indicators, and epistemic modali-
ties (e.g., I think) should be excluded. For propo-
sitions, anaphoric references are typically recon-
structed, resulting in full grammatical sentences
understandable without context.

3 Data

We use the US2016 corpus (Visser et al., 2019),
which contains transcripts of televized debates for
the 2016 U.S. presidential election and reaction to
the debates on Reddit. All dialogues have been
manually segmented and annotated with locutions,
illocutionary connections, and propositions based
on IAT (Reed et al., 2016) (Figure 1). The corpus
was annotated by 4 annotators, yielding an overall
Cohen’s κ of 0.610 (considered substantial agree-
ment). We downloaded the annotations from the
corpus webpage and separately scraped the origi-
nal dialogues.

For data preparation, we aligned each locution
with the original dialogue; e.g., in Figure 1, the lo-
cutions (in the right blue boxes) are aligned with
the original utterance (at the top) using text match-
ing. This allows us to build a model to extract
locutions from utterances, and propositions from

locutions. As our model handles reported speech
and questions, we need additional processing to
identify those locutions. In the corpus, a locu-
tion of reported speech (e.g., S said P) is anno-
tated with an intermediate locution, along with the
speaker (S) and the content of speech (P). The con-
tent of speech, in turn, becomes the proposition
of this locution. Locutions of questions are con-
nected with their propositions via four illocution-
ary acts: pure/assertive/challenge/directive ques-
tioning. The processed data includes 2,672 utter-
ances and 8,008 locutions (278 reported speech
and 565 questions).

4 Model

Our cascade model takes a speaker’s utterance as
input, runs seven modules, and outputs a set of
propositions extracted from the utterance. Figure
2 shows the model structure and an example utter-
ance processed throughout. The functions of indi-
vidual modules are as follows:

1. Anaphora resolution: Replace pronoun
anaphors with their referents.

2. Locution extraction: Extract locutions
(ADUs) from the utterance.

3. Reported speech: Determine if the locution
is reported speech; if so, identify the text seg-
ment representing the content of speech.

4. Question: Determine if the locution or
speech content is a question; if so, extract its
propositional content.

5. Imperative: Determine if the locution or
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speech content is an imperative; if so, extract
its propositional content.

6. Subject reconstruction: Reconstruct the
missing subject, if any, of the locution or
speech content.

7. Revision: Make additional adjustments nec-
essary for final propositions.

5 Method

In this section, we describe how to formulate the
task of each module as a computational problem,
and present various approaches with their perfor-
mance. Each module is evaluated separately on
the ground truth data, instead of using the result of
the previous module. This setting prevents error
propagation and helps to evaluate the performance
of each module more accurately. Some methods
we use are based on machine learning and thus
requires a split of training and test sets. Hence,
we randomly split the entire corpus into five folds
and conduct cross validation with the same folds
throughout the paper.

Extensive experiments are focused on anaphora
resolution, locution extraction, subject reconstruc-
tion, and revision. For the other modules, we
present baseline models or experimental sketches,
leaving room for improvement for future work.

5.1 Module: AnaphoraResolution

Anaphora resolution is based on Stanford
CoreNLP 3.8.0. Yet, blindly applying it induces
several challenges, such as incorrect resolution of
speakers/hearers (this information may be often
missing in the text), resolution of non-pronouns,
and errors inherent in the tool. To rectify these
challenges, we decompose the task into the
following subtasks.
• 1st-person singular: Replace I, my, me,

mine with the speaker’s name.
• 2nd-person singular: Replace you, your,

yours with the previous turn’s speaker name.
• 3rd-person singular gender: Resolve he,

his, him, she, her, hers using CoreNLP.
• 3rd-person singular gender-neutral: Re-

solve it, that using CoreNLP.
• 3rd-person plural: Resolve they, their, them,

theirs using CoreNLP.
Inaccurate anaphora resolution can rather distort
the original meaning of text. Hence, the goal here
is to find the best combination of the subtasks. The
first two subtasks are applied only to TV debates,

BLEU Dep Dep-SO Noun

Locution (no resol) 69.3 .651 .558 .714
CoreNLP 62.8 .617 .538 .704
1S 70.1 .657 .589 .748
1S+2S 69.7 .655 .583 .746
1S+3SG 69.3 .654 .601 .757
1S+3SG+3SN 68.5 .649 .592 .756

Table 1: Performance of anaphora resolution. (1S:
1st-person singular, 2S: 2nd-person singular, 3SG:
3rd-person singular gender, 3SN: 3rd-person singular
gender-neutral, Dep: Dependency, Dep-SO: Depen-
dency for subjects and objects.)

as Reddit user names have not been resolved in the
corpus. All possessive pronouns are replaced with
references suffixed with ’s (e.g., his→ Trump’s).

For evaluation, we assume that effective
anaphora resolution would make a locution more
“similar” to the annotated proposition. Hence,
we compare the similarities between a locution
and the annotated proposition before and after
anaphora resolution, using the following metrics:
• BLEU: Generic string similarity based on n-

grams (n = 1, 2, 3, 4).
• F1-score of dependency tuples: String sim-

ilarity based on dependencies. Less sensitive
than BLEU to the exact locations of words.
• F1-score of nsubj/dobj dependency tuples:

Rough semantic information pieces repre-
senting who did what to whom/what.
• F1-score of nouns: How accurately

anaphora resolution retrieves nouns (as our
anaphora resolution replaces only nouns).

Result
As shown in Table 1, blindly applying CoreNLP
(row 2) significantly hurts all similarity measures
(compared to row 1). In contrast, speaker resolu-
tion (row 3) plays a key role in improving all mea-
sures over original locutions, especially seman-
tic information (subject/object) and nouns. Addi-
tional resolution of hearers (row 4) does not help,
as you is used in a more general way than referring
specifically to the hearer.

Resolving 3rd-person gender pronouns (row 5)
further improves performance for semantic infor-
mation and noun retrieval over speaker resolution,
at the expense of slightly lower BLEU and depen-
dency similarites. Additional resolution of it, its,
and that turns out to rather hurt performance.

For argument mining, it may be desired to re-
solve as many anaphors as possible unless the
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original meaning is significantly hurt, because
pronouns provide little information for identify-
ing propositional relations. Hence, we conclude
that resolution of speakers and 3rd-person gender
pronouns is ideal for this module, and the subse-
quent modules use the result of this configuration.
However, we find that resolution of 3rd-person
gender-neutral pronouns is critical, as will be dis-
cussed in Section 5.8, and eventually they should
be resolved depending on the availability of proper
anaphora resolution tools.

5.2 Module: LocutionExtraction

For each utterance with anaphors resolved, the
LocutionExtraction module identifies locutions,
from which proposition(s) will be extracted. This
task is almost identical to ADU segmentation, and
several methods have already been proposed (Sec-
tion 2.1). Beating prior models for this task is
beyond the scope of this paper; rather, we focus
on understanding what causes confusion for locu-
tion boundaries. Following the convention for this
task (Eger et al., 2017; Ajjour et al., 2017), the task
is formulated as tagging each word with B/I/O (be-
ginning/inside/outside of a locution).

We explore the state-of-the-art BiLSTM model
(Ajjour) (Ajjour et al., 2017), as well as a regular
CRF (R-CRF) and BiLSTM-CRF (Huang et al.,
2015). A CRF showed strong performance for
cross-domain segmentation, and BiLSTM-CRF is
an extension of CRFs, where emission scores are
calculated through BiLSTM. For all models, we
use the following features, adopted from or in-
formed by the prior work (Ajjour et al., 2017):
• word: Current word (i.e., word index for R-

CRF and pre-trained GloVe.840B.300d word
embeddings for BiLSTM-CRF and Ajjour).
• pos: Part-of-speech tag of the current word.
• ne: Named entity type of the current word.
• prev 1gram: Previous word of the current

word, as conjunctions and discourse markers
are good indicators of locution boundaries.
(R-CRF only, as BiLSTM considers context.)
• bos/eos: Indicator of whether the current

word marks the beginning/end of a sentence,
as locution boundaries are often restricted by
sentence boundaries.
• boc/eoc: Indicator of whether the current

word marks the beginning/end of a clause,
as locution boundaries are closely related to
clause boundaries. We obtain clauses from
the constituency parse of the sentence, taking

R-CRF BiLSTM-CRF Ajjour

.788 .789 .794

Table 2: F1-score of locution extraction.

1st locution1 2nd locution

Subordinate clauses 7% 6%
Adverb phrases 4% 8%
Particle phrases 1% 4%
Yes/no 2% -
Relative clauses - 5%

Table 3: Breakdown of locution types that are separated
by a comma or that are back-to-back (total 293 pairs).

phrases tagged with S. For nested clauses, we
take the deepest clauses to avoid overlap.

The model settings are explained in Appendix A.
We evaluate the models using the macro F1-

score across the BIO tags with 5-fold CV.

Result
Ajjour et al. (2017)’s model outperforms the CRF-
based models (Table 2). The model tends to under-
produce locutions (7,767 compared to 8,008 an-
notated), i.e., produce coarse locutions, missing
signals for splitting them further into smaller lo-
cutions. To examine those signals, we gathered
extracted locutions that overlap with two consec-
utive annotated locutions, and counted the words
between the two locutions (Table 9 in Appendix).

Frequently, the model failed to make a split at a
comma (31%) or between locutions that are back-
to-back without any separator in between (10%).
In the majority of these cases, the locutions are
two independent clauses, indicating that the model
needs a more robust mechanism to make use of
clause boundaries. Although not very common, a
locution also serves as a subordinate clause, ad-
verb phrase, particle phrase, yes/no answer, or rel-
ative clause (Table 3). Deciding whether to sepa-
rate a subordinate clause from the main clause is
not trivial. For instance, if- and when-clauses, the
most common subordinate clauses in the analysis,
are separated off or attached to the main clause
depending on the strength of their dependency,
which is often vague. If we are to build a system
to make this decision automatically, we may con-
sider the truth value of the subordinate clause and
whether it is idiomatic.

Other frequent separators include conjunctions
and (21%) and but (6%). As in the case above, the
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Regex Prec Recl F1

say + said .404 .363 .383
Reporting marks .576 .259 .357
Other reporting verbs .579 .040 .074

All above .442 .590 .505

Table 4: Accuracy of reported speech detection.

model sometimes has difficulty deciding whether
to split conjoined phrases and clauses.

5.3 Module: ReportedSpeech

A locution extracted above is examined by the Is-
ReportedSpeech submodule to decide if it is re-
ported speech. If so, the content of speech is iden-
tified by the SpeechIdentification submodule.

5.3.1 Submodule: IsReportedSpeech

To detect if a locution is reported speech, we use
11 regular expressions that capture the existence of
reporting verbs (said, say, called, blamed, argued,
insisted) and reporting marks (“, :). A matched
locution is classified as reported speech.

Result

As shown in Table 4, the method achieves an F1-
score of 0.505, which reveals the difficulty of de-
tecting reported speech (the full list of patterns and
their accuracy are in Table 10 in Appendix). High-
performing patterns capture say/said and reporting
marks; other reporting verbs have too low recall.
Interestingly, regular expressions achieve not only
low recall but also low precision. To see why, we
examined false-positives made by said and open-
ing quotation marks, and found this task quite
challenging indeed. Two big challenges are detect-
ing whether the report actually happened and if the
content of speech is mentioned, as in the following
examples (underlined text increases complexity):

1. Event factuality: I thought reddit said that
Paul was supposed to be the rational one
here; He never even said that he didn’t do it

2. Mention of speech content: He said that
the second time anyway; I mean,
“track the terrorists and not the citizens” is
full of so many holes

These challenges suggest that we need more so-
phisticated features to identify event factuality and
the mention of speech content.

Tregex F1 Coverage

Reporting verbs .234 5%
Reporting marks .371 20%

All above .395 23%

Table 5: Accuracy of speech identification.

5.3.2 Submodule: SpeechIdentification

Speech content is important to identify, as it often
contributes to the argumentation structure (e.g., as
part of an authority claim). We formulate this task
as BIO tagging, as in locution extraction. Individ-
ual words in each locution are tagged with B/I/O
based on the best alignment between the locution
and its content proposition (Section 3).

To identify speech content, we use regular ex-
pressions matched to constituency parse trees. A
speech is assumed to be a clause, preceded by a
reporting verb (said, say, says, claim.*, argue.*,
insist.*) or reporting mark (“, :). Matching is con-
ducted using Tregex in Stanford CoreNLP.

For evaluation, a matched clause is tagged with
B and I, and the other words with O. We compute
the macro F1-score of BIO tags and the percentage
of locutions matched by patterns (coverage).

Result

As shown in Table 5, the Tregex method has a low
F1-score, mostly due to a poor coverage (the full
list of patterns and their accuracy are in Table 11 in
Appendix). The low coverage stems from several
causes, including:
• Speech content may not be a complete clause

(e.g., you say charge the banks more), or the
parser fails to recognize it as a clause.
• Speech content is signaled by various verbs

(e.g., talking about, I’m hearing).
• A reporting verb may be missing. This usu-

ally happens when speech content and main
clause are segmented into separate locutions.

We believe that various signals of speech content
may be captured better by machine learning mod-
els, increasing overall performance.

5.4 Module: Question

A locution or speech content is examined by the
IsQuestion submodule to decide if it is a question.
If so, it is transformed to its propositional content
by the QuestionTransformation submodule.
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Regex Prec Recl F1

Question mark .751 .938 .834
Initiating words .514 .499 .506

All above .588 .972 .733

Table 6: Accuracy of question detection.

5.4.1 Submodule: IsQuestion
To detect if an input text is a question, we use reg-
ular expressions that capture if the enclosing sen-
tence has a question mark or begins with words
that often initiate a question (e.g., how, do) (the
full list of patterns is in Table 12 in Appendix).
The reason for matching the patterns to the entire
sentence is that a question mark is often excluded
from a locution.

Result
As shown in Table 6, a question mark by itself is
strongly indicative of a question and has high re-
call. While it has fair precision, there exist some
confusing false-positives, including:

1. A question merely for emphasis. (e.g., It also
could be somebody sitting on their bed that
weighs 400 pounds, ok?)

2. Reported question. (e.g., You say to yourself,
why didn’t they make the right deal?)

3. A question for expressing confusion. (e.g.,
Bernie?... Come again?)

For questions without a question mark, the
regular expressions for question-initiating words
increase recall but significantly hurts precision.
Some of these words are used as a subordi-
nate conjunction (when) or as a relative pronoun
(which). The low precision of some words is due
to incomplete sentences with missing subject I
(e.g., Could barely understand). The error cases
show that highly accurate detection of a question
requires a combination of several factors.

5.5 Submodule: QuestionTransformation

We found no prior work that addresses transform-
ing questions into propositions, although some
work identifies different types of questions (Zhang
et al., 2017). For this submodule, we only describe
the task with examples in the corpus, without mod-
els. In the corpus, questions are associated with
four illocutionary acts: pure, assertive, challenge,
and directive. Pure questions assume no assertion
and thus may be transformed to a statement under-
specified in the semantic dimension questioned,

optionally containing a placeholder xxx:
• Who is Chafee? → Chafee is xxx
• Do all lives matter? → All lives do / do not

matter
In contrast, assertive and challenge questions have
an assertive force. The difference between them is
whether or not a question is to challenge another
argument.
• What does that say about your ability to han-

dle challenging crises as president? → Clin-
ton does not have the ability to handle chal-
lenging crises as president. (assertive)
• What has he not answered? → He has an-

swered questions (challenge)
Lastly, directive questions have imperative mood:
• Any specific examples? → Provide any spe-

cific examples
We may explore various approaches, such as hand-
crafted rules and seq2seq models, in future work.

5.6 Module: Imperative

There is neither consensus nor common practice
on how to extract propositional content from im-
peratives. Accordingly, the corpus had no guide-
lines for imperatives, and most imperatives have
not been modified. Yet, some imperatives have
been modified according to the annotators’ own
judgment, with examples including:
• Raise the minimum wage → The minimum

wage should be raised
• Let me address college affordability→ Clin-

ton would like to address college affordability
• Look at the mess we’re in→ We’re in a mess

We argue that more analysis would be useful to
understand when and how an imperative can be
systematically transformed to a proposition.

5.7 Module: SubjectReconstruction

A locution or speech content may miss its subject
due to segmentation. Hence, the SubjectRecon-
struction module aims to reconstruct the subject
if it exists within the same sentence. We first trace
the subject of each verb in every sentence, and
then reconstruct the subject (along with auxiliary
verbs) of a segmented text that begins with a verb
whose subject is outside the text.

We trace the subject of a verb using the ba-
sic dependency relations (from CoreNLP) as fol-
lows. When a verb has no subject relation with
any words, we move to the word that is con-
nected with the current verb through a depen-
dency relation of the types: conjunct (conj), auxil-
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Prec BLEU-Reconst BLEU-Locution

.714 62.6 59.1

(a) Performance of subject reconstruction.

Reason %

Ill-formed sentence 25%
No subject in the sentence 25%
Trace mistake 20%
Complex sentence 10%
Phrasal/clausal subject 10%
Wrong antecedents of relative pronouns 10%

(b) Reasons for subject identification errors.

Table 7: Results of subject identification.

iary (aux/auxpass), copula (cop), and open clausal
complement (xcomp). The intuition is that this
new word and the current word are likely to have
the same subject. We repeat this process until
we find a subject or no more move is available.
The following dependency parse illustrates the in-
tuition, i.e., why wanted and send connected with
xcomp have the same subject. Examples of the
other relations are in Appendix B.

Sometimes a verb’s direct subject is a relative
pronoun, in which case we move to the word mod-
ified by the verb via the acl:relcl relation. How-
ever, which may often refer to a phrase or a clause,
and this method may not be able to capture that.

Result
We identified 96 locutions (1.2% of locutions) be-
ginning with a verb whose subject is identified to
be in the sentence yet outside the locution. We
focus on 73% of them whose subjects are recov-
ered in annotated propositions. Note that anno-
tated subjects can be lexically different from the
ones that are correctly identified by our method,
due to imperfect anaphora resolution. Hence, our
evaluation is based on manual comparison, check-
ing if identified subjects and annotated subjects re-
fer to the same thing/person.

As shown in Table 7a, the method identified
subjects correctly for 71% of the locutions. Ac-
cordingly, the BLEU score improved by 3.5, com-
pared to mere locutions. Table 7b breaks down
the reasons for errors. Sometimes the tracing
method made a mistake (20%) or failed to capture
a phrasal/clausal subject (10%). However, more

commonly, CoreNLP could not properly handle
sentences that are ill-formed (25%), missing a sub-
ject (25%), or too long/complex (10%). In some
cases, it incorrectly identified the antecedents of
relative pronouns (10%).

There exists other work that addresses recover-
ing elided materials in sentences using dependen-
cies (Schuster et al., 2018). Following some of
the work, it would be an interesting direction to
explore a richer set of dependency relations, such
as the enhanced dependencies (Schuster and Man-
ning, 2016).

5.8 Module: Revision

While the previous modules handle major tasks,
a processed locution may still need additional ad-
justments, including grammar correction. Hence,
the Revision module makes adjustments to a pro-
cessed locution and outputs proposition(s). This
task is formulated as a seq2seq problem, i.e., a
model automatically learns and decides how to
change the input, based on the data.

We explore two models: standard attention (Lu-
ong et al., 2015) and copy mechanism. Both
encode an input text using BiLSTM and decode
proposition(s) using LSTM. The attention model
computes the probability of a word being gen-
erated, using attention over the encoder’s hidden
states. It requires a lot of training data, whereas
we already know that most input words remain un-
changed. The copy model, on the other hand, de-
cides internally whether to copy an input word or
generate a new word. Informed by existing copy
mechanisms (Gu et al., 2016; Allamanis et al.,
2016), we developed a slight variant that worked
better on this task. The model and parameters are
explained in detail in Appendix C.

We use two evaluation metrics: BLEU and ex-
act match (percentage of outputs identical to the
annotated propositions). We exclude locutions of
reported speech and questions, to better focus on
this module’s performance. The baseline is to treat
each locution as a proposition without modifica-
tion. Accuracy is based on 5-fold CV.

Result
As shown in Table 8, the baseline (row 1) al-
ready achieves high performance, because locu-
tions are often very similar to the propositions ex-
tracted from them unless they are reported speech
or questions. For this reason, the attention model
(row 2) performs poorly, as it tends to make many
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BLEU Exact

Locution 75.5 .473
Attention 47.2 .124
Copy 76.2 .493
Copy (short) 76.6 .501

Table 8: Performance of revision.

unnecessary adjustments to input locutions. The
copy model (row 3) performs significantly better
than the attention model, but sometimes it could
not handle long input texts and generated irrele-
vant content toward the end of an output. Leaving
long input texts (25+ words) unmodified (row 4)
slightly improved performance. Overall, the im-
provement over the baseline is rather modest.

The most notable and useful role of the copy
model is correcting a verb case that was left incor-
rect due to anaphora resolution (e.g., cooper want
to → cooper wants to, webb have had → webb
has had). This behavior is quite desirable. The
model also sometimes removed non-propositional
content and changed a person’s first name to the
full name as reflected in annotations. In general,
the roles of the model remain lexical conversion
rather than semantic conversion.

We found that the differences between gen-
erated and annotated propositions are derived
mainly from unresolved non-personal anaphors
(e.g., it, this, that). Furthermore, annotators some-
times insert omitted verb phrases (e.g., You should.
→ You should clinge to capitalism.; not hard to do
→ not hard to dominate). Such semantic informa-
tion is not recovered by the current copy model.

6 Conclusion

Our decomposition of the proposition extraction
task has yielded that: (i) anaphora resolution is
crucial for recovering the semantic information
of propositions, and the main bottleneck is to re-
solve 2nd-person singular and 3rd-person gender-
neutral pronouns; (ii) locution boundaries are of-
ten confused around clause boundaries; (iii) de-
tecting reported speech and speech content suffers
poor accuracy with pattern matching. These tasks,
along with question detection, reveal the need for
sophisticated feature combinations for satisfactory
results, and we may need additional training data;
(iv) for subject reconstruction, the tracing method
is fairly effective, and the accuracy is bounded
mainly by the robustness of dependency parsing to
ill-formed and complex sentences; (v) the final re-

vision with a seq2seq model remains mostly gram-
mar error correction, and substantial semantic re-
vision may require significantly different models.

Though we are starting to explore the chal-
lenges facing complete reconstruction of propo-
sitions from natural argumentative discourse, our
cascade model already demonstrates improvement
over locutions (ADUs) in several modules for this
understudied yet crucial task in argument mining.

We are currently working on systematic extrac-
tion of propositional content from questions and
imperatives, and evaluation of the entire cascade
model as a whole. Our future direction is to use
extracted propositions to develop argument min-
ing models that identify nuanced types of proposi-
tional relations informed by argumentation theory.
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Top 1-8 Top 9-16 Top 17-24

, (31%) – (2%) or (1%)
and (12%) , because (1%) ? (1%)

NONE (10%) -lrb- (1%) . and (1%)
, and (9%) , which (1%) to (1%)
, but (4%) ; (1%) as (1%)

. (3%) ... (1%) , so (1%)
because (2%) - (1%) that (1%)

but (2%) when (1%) if (0%)

Table 9: Words that separate two annotated locutions that overlap with one predicted locution. NONE indicates
that the locutions are back-to-back without any separator.

Regex Prec Recl F1

(?<!i )said (\S + ){3,} .387 .295 .335
ˆ‘‘ .559 .119 .196
, ‘‘ .552 .115 .190
you say .500 .068 .120
said that (\S + ){3,} .394 .047 .084
: ‘‘ .875 .025 .049
said ‘‘ .714 .018 .035
called (\S + )+‘‘ .556 .018 .035
blamed .500 .014 .028
argued that (\S + ){3,} 1.000 .004 .007
insisted that (\S + ){3,} 1.000 .004 .007

All above .442 .590 .505

Table 10: Accuracy of reported speech detection.

Tregex F1 Coverage

S $ (VBD < said) .234 5%
S $ (VBD < /says?/) .184 0%
S $ (VBD < /claim.*/) .184 0%
S $ (VBD < /argue.*/) .184 0%
S $ (VBD < /insist.*/) .184 0%
S < ‘‘ .352 15%
S $- /:/ .220 5%

All above .395 23%

Table 11: Regular expressions (Tregex syntax) for speech identification and their accuracy. The first five patterns
represent a clause that is a sibling of said, say or says, claim.*, argue.*, and insist.*, respectively. The last two
patterns represent a clause that includes an opening quotation mark and follows a colon, respectively.
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Regex Prec Recl F1 Regex Prec Recl F1

\? .751 .938 .834 ˆshould .800 .014 .028
ˆdo .485 .087 .147 ˆwould .538 .012 .024
ˆhow .759 .078 .141 ˆwill 1.000 .011 .021
ˆwhat .462 .064 .112 ˆwas .667 .011 .021
ˆis .775 .055 .102 ˆwhere .714 .009 .017
ˆwhy .423 .039 .071 ˆwhen .071 .009 .016
ˆdid .842 .028 .055 ˆwhich .286 .007 .014
ˆare .800 .021 .041 ˆhave .500 .005 .011
ˆwho .706 .021 .041 ˆwere 1.000 .004 .007
ˆcan .611 .019 .038 ˆcould .182 .004 .007
ˆdoes .588 .018 .034 ˆhas .333 .002 .004

All .588 .972 .733

Table 12: Accuracy of question detection.
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A Module: LocutionExtraction

For R-CRF, we used sklearn-crfsuite 0.3.6. We
conducted grid search, exploring all combinations
of the bias feature ({1, 0}) and the following opti-
mization parameters:
• Gradient descent using the L-BFGS method

– L1 regularization: 0, 0.05, 0.1
– L2 regularization: 0, 0.05, 0.1

• Passive Aggressive (PA)
– Aggressiveness parameter: 0.5, 1, 2

For BiLSTM-CRF, we used the following pa-
rameter values:
• BiLSTM hidden dim: 128
• Optimizer: Adam
• Learning rate: 0.001
For Ajjour, we used the following parameter

values:
• Encoder BiLSTMs hidden dim: 128
• Output BiLSTM hidden dim: 5, 10, 20
• Optimizer: Adam
• Learning rate: 0.001

B Module: SubjectReconstruction

Conjunct (conj): Two verbs that are conjoined by
a conjunction are likely to have the same subject.
In the following example, preserving has the same
subject as protecting does.

Auxiliary, passive auxiliary (aux, auxpass): An
auxiliary verb that modifies a (passive) verb is
likely to have the same subject as the modified
verb does. In the following example, got has the
same subject as carried does.

Copula (cop): A copula that joins a verb with its
subject is likely to have the same subject as the
verb. In the following example, ’ve has the same
subject as wrong does.

Open clausal complement (xcomp): An open
clausal complement of a verb is likely to have the
same subject as the verb does. In the following ex-
ample, send has the same subject as wanted does.

Adverbial clause modifier (advcl): An adverbial
clause modifier of a verb may or may not have the
same subject as the verb does. In the following ex-
amples, the two sentences have the same structure
of verb + object + marked adverbial clause mod-
ifier. However, in the first sentence, keeping has
the same subject as do does, whereas in the second
sentence, leaving has a different subject than stop
does. For reliability, we do not include adverbial
clause modifiers for tracing a subject.

Relative clause modifier (acl:relcl): Sometimes
a verb’s direct subject is a relative pronoun, in
which case we move to the word that is modified
the current verb. In the following example, ran
modifies campaign, which is the proper subject.

However, which may often refer to a phrase or a
clause, and this method may not be able to capture
that.

C Module: Revision

C.1 Copy Model
Suppose an input text is a sequence of words
wE1 , · · · , wEN , and denote the word vector (e.g.,
word embedding) of wEi as wE

i . The BiLSTM
encoder encodes each word wE

i and outputs for-
ward/backward hidden states

−→
hE
i and

←−
hE
i as

−→
hE
i ,
←−
hE
i =
−−−−−→
BiLSTM(wE

i ,
−→
hE
i−1,
←−
hE
i+1)

−→
hE

0 =
←−
hE
N+1 = 0.
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For the jth word to be generated, the LSTM de-
coder first encodes the concatenation of the pre-
viously generated word wD

j−1 and context vector

h̄
E
j−1 (explained below), along with the previous

hidden state as

hDj = LSTM([wD
j−1; h̄

E
j−1],h

D
j−1)

hD0 = [
←−
hE

1 ;
−→
hE
N ].

Next, the decoder attends to the encoder’s hidden
states using an attention mechanism. The attention
weight of the ith hidden state is calculated as the
dot product of the hidden states from the encoder
and decoder:

aji = hDj · [
←−
hE
i ;
−→
hE
i ], âji =

exp(aji)∑
i′ exp(aji′)

h̄
E
j =

∑

i

aji[
−→
hE
i ;
←−
hE
i ].

The probability of the ith input word being copied
is proportional to the attention weight of the ith
hidden state. On the other hand, calculation of the
probability of newly generating the vth word in
the vocabulary follows the standard attention de-
coder mechanism. Denoting these probabilities as
PC(wv) and PG(wv), respectively, they are calcu-
lated as

PC(wv) =
N∑

i=1

âjiI(wEi = wv)

PG(wv) = softmax(WG[hDj ; h̄
E
j ] + bG)v,

where WG and bG are corresponding weight ma-
trix and bias vector. The final probability of wv
being generated is a weighted sum of PC(wv) and
PG(wv), where the weight δ is automatically cal-
culated as

δj = σ(Wδh
D
j + bδ)

P (wv) = δPC(wv) + (1− δ)PG(wv),

where Wδ and bδ are corresponding weight matrix
and bias vector. The original method for calcu-
lating the weight (Gu et al., 2016) and a constant
weight did not perform well on our task.

Beam search is used to choose the best output.
Gradient clipping is used to avoid the exploding
gradient problem.

C.2 Model Parameters
We explore the combinations of the following pa-
rameter values:

• Encoder hidden dim: 96, 128, 160, 192 (at-
tention model) / 128, 192 (copy model)
• Beam size: 4
• Optimizer: Adam
• Learning rate: 0.001
• Gradient clipping: 1
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Abstract

When assessing relations between argumenta-
tive units (e.g., support or attack), computa-
tional systems often exploit disclosing indica-
tors or markers that are not part of elementary
argumentative units (EAUs) themselves, but
are gained from their context (position in para-
graph, preceding tokens, etc.). We show that
this dependency is much stronger than previ-
ously assumed. In fact, we show that by com-
pletely masking the EAU text spans and only
feeding information from their context, a com-
petitive system may function even better. We
argue that an argument analysis system that re-
lies more on discourse context than the argu-
ment’s content is unsafe, since it can easily be
tricked. To alleviate this issue, we separate ar-
gumentative units from their context such that
the system is forced to model and rely on an
EAU’s content. We show that the resulting
classification system is more robust, and argue
that such models are better suited for predict-
ing argumentative relations across documents.

1 Introduction

In recent years we have witnessed a great surge
in activity in the area of computational argument
analysis (e.g. Peldszus and Stede (2013); Stab and
Gurevych (2014b); Rasooli and Tetreault (2015);
Stab et al. (2018)), and the emergence of dedicated
venues such as the ACL Argument Mining work-
shop series starting in 2014 (Green et al., 2014).

Argumentative relation classification is a sub-
task of argument analysis that aims to determine
relations between argumentative units A and B, for
example, A supports B; A attacks B. Consider the
following argumentative units (1) and (2), given
the topic (0) “Marijuana should be legalized”:

(1) Legalizing marijuana can increase use by
teens, with harmful results.

0

21

negative

attacks

positive

Figure 1: A graph representation of a topic (node w/
dashed line), two argumentative premise units (nodes
w/ solid line), premise-topic relations (positive or neg-
ative) and premise-premise relations (here: attacks).

(2) Legalization allows the government to set age
restrictions on buyers.

This example is modeled in Figure 1. It is clear
that (1) has a negative stance towards the topic and
(2) has a positive stance towards the topic. More-
over, we can say that (2) attacks (1). In discourse,
such a relation is often made explicit through dis-
course markers: (1). However, (2); On the one
hand (1), on the other (2); (1), although (2); Ad-
mittedly, (2); etc. In the absence of such markers
we must determine this relation by assessing the
semantics of the individual argumentative units,
including (often implicit) world knowledge about
how they are related to each other.1

In this work, we show that argumentative rela-
tion classifiers – when provided with textual con-
text surrounding an argumentative unit’s span –
are very prone to neglect the actual textual con-
tent of the EAU span. Instead they heavily rely
on contextual markers, such as conjunctions or ad-
verbials, as a basis for prediction. We argue that a
system’s capacity of predicting the correct relation
based on the argumentative units’ content is im-
portant in many circumstances, e.g., when an ar-
gumentative debate crosses document boundaries.

1In case of (1) and (2): By setting age restrictions on le-
galization of Marijuana, increased use by teens can be (ex-
pected to be) prevented, thus we can infer that (2) attacks (1).

25



For example, the prohibition of marijuana debate
extends across populations and countries – argu-
mentative units for this debate can be recovered
from thousands of documents scattered across the
world wide web. As a consequence, argumenta-
tive relation classification systems should not be
(immensely) dependent on contextual clues – in
the discussed cross-document setting these clues
may even be misleading for such a system, since
source and target arguments can be embedded in
different textual contexts (e.g., when (1) and (2)
stem from different documents it is easy to imag-
ine a textual context where (2) is not introduced by
however but instead by an ‘inverse’ form such as
e.g. moreover).

Contributions In Section §3 we describe argu-
mentative relation classification systems and their
features. Then, to assess the systems’ dependency
on context, we propose a three-way feature group-
ing: (i) features which access only the EAU span;
(ii) features which access only the context of an
EAU; (iii) features which access both EAU span
and its context. Our experimental results (§4) in-
dicate that systems, when given the option, tend to
focus on the context of an EAU, while neglecting
its content. On the one hand, this leads to strong
performance when EAUs appear sequentially in a
rhetorically well structured argumentative mono-
logue. Yet, on the other hand, we show that such
systems can easily be fooled, e.g., when EAUs are
extracted from different documents.

2 Related Work

It is well-known that the rhetorical and argumen-
tative structure of texts bear great similarities. For
example, Azar (1999); Green (2010); Peldszus and
Stede (2013) observe that elementary discourse
units (EDUs) in RST (Mann and Thompson, 1987)
share great similarity with elementary argumen-
tative units (EAUs) in argumentation analysis.2

Wachsmuth et al. (2018) experiment with a mod-
ified version of the Microtext corpus (Peldszus
and Stede, 2016), which is an extensively anno-
tated albeit small corpus. Similar to us, they sep-
arate argumentative units from discursive contex-
tual markers. While Wachsmuth et al. (2018) con-
duct a human evaluation to investigate the sepa-
ration of Logos and Pathos aspects of arguments,

2Throughout this work we often drop “elementary” and
use the phrases EAU and (elementary) argumentative unit and
argumentative component interchangeably.

our work investigates how (de-)contextualization
of argumentative units affects automatic argumen-
tative relation classification models.

Notions of context Various notions of context
are being used in the area of argumentation min-
ing. For example, Lippi and Torroni (2016) de-
velop a context-independent claim detection sys-
tem, where by context-independent they refer to
a system which is not tailored to a specific topic
(analogously, Levy et al. (2014) aim at context-
dependency). Another notion of context concerns
the graph context in which relations and EAUs are
embedded (Kuribayashi et al., 2018). On the other
hand, we adopt a more textual notion of context,
that is we take a given EAU span as content and
text which is not in the EAU span as context. This
goes in the same direction as Stab and Gurevych
(2014b, 2017); Persing and Ng (2016) and Aker
et al. (2017) who incorporate features derived
from EAU-surrounding text in their classification
systems. However, they do not clearly separate
between a word indicator feature extracted from
within (or outside) the EAU span. For exam-
ple, when computing features for an EAU, they
also take into account EAU-preceding tokens. The
preceding tokens, often contain shallow discourse
markers which highlight the relationship between
two EAUs (e.g., because, however, etc.).

To the best of our knowledge, prior work has
not yet thoroughly investigated the impact of fea-
tures extracted from the EAU vs. features ex-
tracted from the EAU-embedding context. Our
work fills this gap and shows that the impact of
contextual clues from the EAU context on classi-
fier performance can be much greater than the im-
pact of features extracted from the EAU content.

Context matters Nguyen and Litman (2016);
Nguyen (2018) extract additional features from
the text between source and target EAUs (on
the StudentEssay-v01 data (Stab and Gurevych,
2014a)) which results in enhanced predictive per-
formance. However, having seen the clear ad-
vantages of incorporating context (performance-
wise), we find that the downsides of incorporating
context remain untold. In this work, we demon-
strate that systems which are offered EAU context
may be prone to neglect the EAU content, an issue
that can have undesired effects.

Argumentative relation classification Argu-
mentative relation classification (Mochales and
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Moens, 2011) is the task for which we aim to ex-
amine the context-content relationship. It is con-
cerned with predicting and analyzing relations be-
tween argumentative units such as, for example,
support or attack. Besides works discussed above
(Nguyen and Litman, 2016; Stab and Gurevych,
2014b, 2017), this task has also been addressed by
Cocarascu and Toni (2017) who develop a neural
model to label the edge between two EAUs with
{attack, support,∅}. The task has also been ap-
proached by taking global graph context into ac-
count. E.g., Hou and Jochim (2017) jointly model
argument relation classification and stance classi-
fication in the DebatePedia3 corpus using Markov
logic networks (Richardson and Domingos, 2006).
Peldszus and Stede (2015) experiment with Mi-
crotexts and show that it can be beneficial to model
argumentative relations jointly in a network with a
minimum spanning tree decoding algorithm. Our
work focuses on local relation prediction and la-
beling using the well-established StudentEssay-
v02 data (Stab and Gurevych, 2017)4 with 402 ar-
gumentative essays and thousands of annotated re-
lations between EAUs.

3 Argumentative Relation Prediction:
Models and Features

In this section, we describe different formula-
tions of the argumentative relation classification
task and describe features used by our replicated
model. In order to test our hypotheses, we propose
to group all features into three distinct types.

Three feature types: content-based; content-
ignorant; full access We categorize features of
Stab and Gurevych (2017) into three types: (i) fea-
tures derived from the context of the argumentative
unit (e.g., leading and trailing tokens surrounding
the EAU span), (ii) features derived from the argu-
mentative unit’s content (i.e., the EAU span), and
(iii) a joint feature set consisting of the union of
features from (i) and (ii). However, in (iii) we ad-
ditionally include features that capture discourse
structures that overlap the boundaries between an
EAU and its surroundings.

Notations Henceforth we denote models that
only make use of features of type (i), ignoring any-
thing inside the EAU, as content-ignorant (CI),
and models that are given only features covering

3http://debatepedia.idebate.org/
4https://tinyurl.com/y269fq3k

the EAU span as content-based (CB). A model
that combines both is denoted by full-access
(FA). We distinguish these different model types
with a type-variable T ∈ {CI, CB,FA}.

3.1 Models

Now, we introduce a classification of three differ-
ent prediction models used in the argumentative
relation prediction literature. We will inspect all
of them and show that all can suffer from severe
issues when focusing (too much) on the context.

The model h adopts a discourse parsing view
on argumentative relation prediction and predicts
one outgoing edge for an argumentative unit (one-
outgoing edge). Model f assumes a connected
graph with argumentative units and is tasked with
predicting edge labels for unit tuples (labeling re-
lations in a graph). Finally, a model g is given
two (possibly) unrelated argumentative units and
is tasked with predicting connections as well as
edge labels (joint edge prediction and labeling).

One-outgoing edge Stab and Gurevych (2017)
divide the task into relation prediction l and rela-
tion class assignment h:

lT : A×A→ {linked,∅} (1)

hT : A→ {attack, support}, (2)

which the authors describe as argumentative re-
lation identification (l) and stance detection (h).
In their experiments, T = FA, i.e., no distinc-
tion is made between features that access only the
argument content (EAU span) or only the EAU’s
embedding context, and some features also con-
sider both (e.g., discourse features). This model
adopts a parsing view on argumentative relation
classification: every unit is allowed to have only
one type of outgoing relation (this follows triv-
ially from the fact that h has only one input). Ap-
plying such a model to argumentative attack and
support relations might impose unrealistic con-
straints on the resulting argumentation graph: A
given premise might in fact attack or support sev-
eral other premises.5 The approach may suffice for
the case of student argumentative essays, where
EAUs are well-framed in a discourse structure, but
seems overly restrictive for many other scenarios.

5E.g., this decision will improve the living situation for
children. It may also support elderly people with low income.
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Labeling relations in a graph Another way of
framing the task, is to learn a function

fT : A×A→ {support, attack}, (3)

Here, an argumentative unit is allowed to be in a
attack or support relation to multiple other EAUs.
Yet, both h and f assume that inputs are already
linked and only the class of the link is unknown.

Joint edge prediction and labeling Thus, we
might also model the task in a three-class classi-
fication setting to learn a more general function
that performs relation prediction and classification
jointly (see also, e.g., Lippi and Torroni (2016)):

gT : A×A→ {support, attack,∅}. (4)

The model described by Eq. 4 is the most gen-
eral one: not only does it assume a graph view
on argumentative units and their relations (as does
Eq. 3); in model formulation (Eq. 4), an argumen-
tative unit can have no or multiple support or at-
tack relations. It naturally allows for cases where
an argumentative unit a (supports b | attacks c | is-
unrelated-to d). Given a set of EAUs mined from
different documents, this model enables us to con-
struct a full-fledged argumentation graph.

3.2 Feature implementation

Our feature implementation follows the feature de-
scriptions for Stance recognition and link identifi-
cation in Stab and Gurevych (2017). These fea-
tures and variations of them have been used suc-
cessfully in several successive works (cf. Stab and
Gurevych (2014b); Nguyen and Litman (2016);
Aker et al. (2017)).

For any model the features are indexed by I =
{1, ..., N}. We create a function Φ : I → T
which maps from feature indices to feature types.
In other words, Φ tells us, for any given feature,
whether it is content-based (CB), content-ignorant
(CI) or full access (FA). The features for, e.g.,
the joint prediction model g of type CI (gCI)
can then simply be described as {i ∈ I|Φ(i) =
CI}. Recall that features computed on the ba-
sis of the EAU span are content-based (CB), fea-
tures from the EAU-surrounding text are content-
ignorant (CI) and features computed from both
are denoted by full-access (FA). Details on the
extraction of features are provided below.

However, legalization allows the government to set age restrictions on buyers.                                                   

ADVP

S’

S

✂

Context: {S’ → ADVP, 
                ADVP → However}

Content: {S → NP, 
                NP→ DET N, 
                DET→ the, …}

Full: Context U Content

Figure 2: Production rule extraction from constituency
parse for two different argumentative units.

Lexical features These consist of boolean val-
ues indicating whether a certain word appears
in the argumentative source or target EAU or
both (and separately, their contexts). More pre-
cisely, for any classification instance we extract
uni-grams from within the span of the EAU (if
T = CB) or solely from the sentence-context sur-
rounding the EAUs (if T = CI). Words which oc-
cur in both bags are only visible in the full-access
setup T = FA and are modeled as binary indica-
tors.

Syntactic features Such features consist of
syntactic production rules extracted from con-
stituency trees – they are modelled analogously to
the lexical features as a bag of production rules.
To make a clear division between features de-
rived from the EAU embedding context and fea-
tures derived from within the EAU span, we di-
vide the constituency tree in two parts, as is il-
lustrated in Figure 2. If the EAU is embedded
in a covering sentence, we cut the syntax tree at
the corresponding edge (

✂

in Figure 2). In this
example, the content-ignorant (CI) bag-of-word
production rule representation includes the rules
S → ADV P and ADV P → however. Analo-
gously to the lexical features, the production rules
are modeled as binary indicator features.6

Structural These features describe shallow
statistics such as the ratio of argumentative unit
tokens compared to sentence tokens or the posi-
tion of the argumentative unit in the paragraph.
We set these features to zero for the content rep-
resentation of the argumentative unit and replicate
those features that allow us to treat the argumen-

6A notable insight from our experiments is that the pro-
duction rule features have a considerable intersection with
lexical features. This is due to the terminal production rules,
which correspond to the leaves of the constituency tree. This
explains the surprisingly high scores for production rule fea-
tures in the production-rule-only ablation experiments in e.g.,
Stab and Gurevych (2014b, 2017).
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tative unit as a black-box. For example, in the
content-based (CB) system that has access only to
the EAU, we can compute the #tokens in the EAU,
but not the #tokens in EAU divided by #tokens in
the sentence. The latter feature is only accessible
in the full access system variants. Hence, in the
content-based (CB) system most of these statistics
are set to zero since they cannot be computed by
considering only the EAU span.

Discourse For the content-based representation
we retrieve only discourse relations that are con-
fined within the span of the argumentative unit. In
the very frequent case that discourse features cross
the boundaries of embedding context and EAU
span, we only take them into account for FA.

Embeddings We use the element-wise sum of
300-dimensional pre-trained GloVe vectors (Pen-
nington et al., 2014) corresponding to the words
within the EAU span (CB) and the words of
the EAU-surrounding context (CI). Additionally,
we compute the element-wise subtraction of the
source EAU vector from the target EAU vector,
with the aim of modelling directions in distribu-
tional space, similarly to Mikolov et al. (2013).
Words with no corresponding pre-trained word
vector and empty sequences (e.g., no preceding
context available) are treated as a zero-vector.

Sentiment Tree-based sentiment annotations
are sentiment scores assigned to nodes in con-
stituency parse trees (Socher et al., 2013). We
represent these scores by a one-hot vector of di-
mension 5 (5 is very positive, 1 is very negative).
We determine the contextual (CI) sentiment by
looking at the highest possible node of the con-
text which does not contain the EAU (ADVP in
Figure 2). The sentiment for an EAU span (CB) is
assigned to the highest possible node covering the
EAU span which does not contain the context sub-
tree (S in Figure 2). The full-access (FA) score
is assigned to the lowest possible node which cov-
ers both the EAU span and its surrounding con-
text (S’ in Figure 2). Next to the sentiment scores
for the selected tree nodes and analogously to the
word embeddings, we also calculate the element-
wise subtraction of the one-hot sentiment source
vectors from the one-hot sentiment target vectors.
This results in three additional vectors correspond-
ing to CB, CI and FA difference vectors.

#train #test

model h & f g h & f g

documents 322 322 80 80
support 3820 3820 1021 1021
attack 405 405 92 92
∅ - 5474 - 1622

Table 1: Data set statistics.

4 Experiments

Data and pre-processing We use the corpus
of 402 persuasive essays which were annotated
with argumentative units, their stances towards
the topic and argumentative relations (Stab and
Gurevych, 2017). The data is suited for our ex-
periments because the annotators were explicitly
asked to provide annotations on a clausal level.
This entails that contextual clues tend not to be
contained in the annotated span (e.g., only peo-
ple should not smoke is annotated as EAU in the
sentence Therefore, people should not smoke.). In
this work, we are concerned with classifying re-
lations between argumentative units into support
or attack and thus do not consider other annota-
tions. For feature extraction, we process all doc-
uments with Stanford CoreNLP (Manning et al.,
2014) with the following annotation layers: sen-
tence tokenize, word tokenize, constituency parse
and constituency-sentiment. For extraction of the
discourse-features, we proceed by parsing all doc-
uments with the PDTB-parser7 developed by Lin
et al. (2014). For the joint task of predicting three
link classes (including a non-linked class), we ex-
tract as non-linked EAU pairs all EAU pairs which
are not linked on a document level. Data set statis-
tics are displayed in Table 1.

Setup As explained in §3, we are interested in
three distinct configurations of the argumentative
relation classifier: content-based (CB), content-
ignorant (CI) and full-access (FA). Naturally,
we would expect the latter to perform best and
perhaps we would also expect CB to outperform
CI – a system which has no access to the ar-
gumentative unit internals whatsoever should not
be able to confidently determine relations between
them.Note that some features are only available to
FA, which is the case when features cross con-

7https://github.com/WING-NUS/
pdtb-parser
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system F1sup F1att macro F1

S&G16 94.7 41.3 68.0
replicated (hFA) 94.7 44.0 69.3

Table 2: Baseline system replication results.

model T F1sup F1att F1∅ macro F1

h mfs 95.7 0 - 47.8
CB 92.9 21.7 - 57.3†

CI 95.0 38.6 - 67.0†‡

FA 94.7 44.0 - 69.3†‡

f mfs 95.7 0 - 47.8
CB 92.3 20.3 - 56.3†

CI 96.1 41.7 - 70.8†‡

FA 94.4 42.4 - 68.5†‡

g mfs 0 0 74.5 8.3
CB 54.3 9.9 65.0 43.4†

CI 63.0 34.8 76.5 59.3†‡

FA 46.6 32.3 73.1 56.1†‡

Table 3: Argumentative relation classification models
h, f, g with different access to content and context;
models of type CI (content-ignorant) have no access to
the EAU span. †: significantly better than mfs baseline
(p < 0.005); ‡ significantly better than content-based
(p < 0.005).

text and argumentative unit spans (e.g., some of
the discourse features), thereby resisting a clear
categorization into CB or CI. Same as most prior
work, we use an SVM to learn the feature weights.

4.1 Results

Replication experiments Our first step towards
our main experiments is to replicate the compet-
itive argumentative relation classifier of Stab and
Gurevych (2017, 2014b). Hence, for comparison
purposes, we first formulate the task exactly as it
was done in this prior work, using the model for-
mulation in Eq. 2, which determines the type of
outgoing edge from a source (i.e., tree-like view).

The results in Table 2 confirm the results of Stab
and Gurevych (2017) and suggest that we success-
fully replicated a large proportion of their features.

Main results The results for all three prediction
settings (one outgoing edge: h, support/attack: f
and support/attack/neither: g) across all type vari-
ables (CB, CI and FA) are displayed in Table 3.
All models significantly outperform the majority
baseline with respect to macro F1. Intriguingly,

the content-ignorant models (CI) always perform
significantly better than the models which only
have access to the EAUs’ content (CB, p < 0.005).
In the most general task formulation (g), we ob-
serve that CI even significantly outperforms the
model which has maximum access (seeing both
EAU spans and surrounding contexts: FA).

At first glance, the results of the purely EAU fo-
cused systems (CB) are disappointing, since they
fall far behind their competitors. On the other
hand, their F1 scores are not devastatingly bad.
The strong most-frequent-class baseline is signif-
icantly outperformed by the content-based (CB)
system, across all three prediction settings.

In summary our findings are as follows: (i)
models which see the EAU span (content-based,
CB) are significantly outperformed by models that
have no access to the span itself (content-ignorant,
CI) across all settings; (ii) in two of three predic-
tion settings (f and g), the model which only has
access to the context even outperforms the model
that has access to all information in the input. The
fact that using features derived exclusively from
the EAU embedding context (CI) can lead to bet-
ter results than using a full feature-system (FA)
suggests that some information from the EAU can
even be harmful. Why this is the case, we can-
not answer exactly. A plausible cause might be re-
lated to the smaller dimension of the feature space,
which makes the SVM less likely to overfit. Still,
this finding comes as a surprise and calls for fur-
ther investigation in future work.

Robustness tests A system for argumentative
relation classification can be applied in one of two
settings: single-document or cross-document, as
illustrated in Figure 3: in the first case (top), a sys-
tem is tasked to classify EAUs that appear linearly
in one document – here contextual clues can of-
ten highlight the relationship between two units.
This is the setting we have been considering up
to now. However, in the second scenario (bot-
tom), we have moved away from the closed single-
document setting and ask the system to classify
two EAUs extracted from different document con-
texts. This setting applies, for instance, when we
are mining arguments from multiple sources.

In both cases, however, a system that relies
more on contextual clues than on the content ex-
pressed in the EAUs is problematic: in the single-
document setting, such a system will rely on dis-
course indicators – whether or not they are justi-
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Figure 3: Single-document (top) vs. cross-document
(bottom) argumentative relation classification. Black
edge: gold label; purple edge: predicted label.

fied by content – and can thus easily be fooled.
In the cross-document setting, discourse-based

indicators – being inherently defined with respect
to their internal document context – do not have a
defined rhetorical function with respect to EAUs
in a separate document and thus a system that has
learned to rely on such markers within a single-
document setting can be seriously misled. We
believe that the cross-document setting should be
an important goal in argumentation analysis, since
it generalizes better to many debates of interest,
where EAUs can be found scattered across thou-
sands of documents. For example, for the topic of
legalizing marijuana, EAUs may be mined from
millions of documents and thus their relations may
naturally extend across document boundaries. If a
system learns to over-proportionally attend to the
EAUs’ surrounding contexts it is prone to making
many errors.8

In what follows we are simulating the effects
that an overly context-sensitive classifier could
have in a cross-document setting, by modifying
our experimental setting, and study the effects on
the different model types: In one setup – we call
it randomized-context – we systematically distort
the context of our testing instances by exchang-
ing the context in a randomized manner; in the
other setting – called no-context, we are delet-
ing the context around the ADUs to be classified.

8 In fact, similar considerations also apply when moving
from argumentative monologue to dialogue, i.e., in interac-
tive debates. Again, systems need to be able to detect rela-
tions between EAUs uttered by different speakers and inde-
pendently from the speaker-specific utterance context.

Randomized-context simulates an open world de-
bate where argumentative units may occur in dif-
ferent contexts, sometimes with discourse markers
indicating an opposite class. In other words, in this
setting we want to examine effects when porting a
context-sensitive system to a multi-document set-
ting.9 For example, as seen in Figure 3, the context
of an argumentative unit may change from “How-
ever” to “Moreover” – which can happen naturally
in open debates. The results are displayed in Fig-
ure 4. In the standard setting (Figure 4a), the mod-
els that have access to the context besides the con-
tent (FA) and the models that are only allowed
to access the context (CI), always perform better
than the content-based models (CB) (bars above
zero). However, when we randomly flip contexts
of the test instances (Figure 4b), or suppress them
entirely (Figure 4c), the opposite picture emerges:
the content-based models always outperform the
other models. For some classes (support, ∅) the
difference can exceed 50 F1 percentage points.
These two studies, where testing examples are var-
ied regarding their context (randomized-context or
no-context) simulates what can be expected if we
apply our systems for relation class assignment
to EAUs stemming from heterogeneous sources.
While the performances of a purely content-based
model naturally stays stable, the performance of
the other systems decrease notably – they perform
worse than the content-based model.

Feature investigation We calculate the ANOVA
classification F scores of the features with respect
to our three task formulations h, g and f . The
F percentiles of features extracted from the EAU
surrounding text (CI) and features extracted from
the EAU span (CB), are displayed in Figure 5.

It clearly stands out that features obtained from
the EAU surrounding context (CI) are assigned
much higher scores compared to features stem-
ming from the EAU span (CB). This holds true for
all three task formulations and provides further ev-
idence that models – when given the option – put a
strong focus on contextual clues while neglecting
the information provided by the EAU span itself.

5 Discussion

While competitive systems for argumentative rela-
tion classification are considered to be robust, our

9We concede that this is an artificial setup, but defer more
realistic cross-document experiments to future work.
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A higher feature score suggests greater predictive ca-
pacity.

experiments have shown that despite confidence-
inspiring scores on unseen testing data, such sys-
tems can easily be fooled – they can deliver strong
performance scores although the classifier does
not have access to the content of the EAUs. In this
respect, we have provided evidence that there is a
danger in case models focus too much on rhetor-
ical indicators, in detriment of the context. Thus,
the following question arises: How can we pre-
vent argumentation models from modeling argu-
ments or argumentative units and their relations in
overly naı̈ve ways? A simple and intuitive way is
to dissect EAUs from their surrounding document
context. Models trained on data that is restricted to
the EAUs’ content will be forced to focus on the
content of EAUs. We believe that this will enhance
the robustness of such models and allows them
to generalize to cross-document argument relation
classification. The corpus of student essays makes
such transformations straightforward: only the

EAUs were annotated (e.g., “However, [argA]”).
If annotations extend over the EAUs (e.g., only
full sentences are annotated, “[argHowever, A]”),
such transformations could be performed automat-
ically after a discourse parsing step. When in-
specting the student essays corpus, we further ob-
served that an EAU mining step should involve
coreference resolution to better capture relations
between EAUs that involve anaphors (e.g., “Ex-
ercising makes you feel better” and “It[Exercising]

increases endorphine levels”).

Thus, in order to conduct real-world end-to-
end argumentation relation mining for a given
topic, we envision a system that addresses three
steps: (i) mining of EAUs and (ii) replacement of
pronouns in EAUs with referenced entities (e.g.,
It is healthy → Excercise is healthy). Finally
(iii), given the cross product of mined EAUs we
can apply a model of type g to construct a full-
fledged argumentation graph, possibly spanning
multiple documents.10 We have shown that in or-
der to properly perform step (iii), we need stronger
models that are able to better model EAU contents.
Hence, we encourage the argumentation commu-
nity to test their systems on a decontextualized
version of the student essays, including the pro-
posed – and possibly further extended – testing se-
tups, to challenge the semantic representation and
reasoning capacities of argument analysis models.
This will lead to more realistic performance esti-
mates and increased robustness of systems when
addressing desirable multi-document tasks.

10cf. Peldszus and Stede (2015) for graph prediction within
single documents.
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6 Conclusion

We have shown that systems which put too much
focus on discourse information may be easily
fooled – an issue which has severe implications
when systems are applied to cross-document argu-
mentative relation classification tasks. The strong
reliance on contextual clues is also problematic
in single-document contexts, where systems can
run a risk of assigning relation labels relying on
contextual and rhetorical effects – instead of fo-
cusing on content. Hence, we propose that re-
searchers test their argumentative relation clas-
sification systems on two alternative versions of
the StudentEssay data that reflect different access
levels. (i) EAU-span only, where systems only
see the EAU spans and (ii) context-only, where
systems can only see the EAU-surrounding con-
text. These complementary settings will (i) chal-
lenge the semantic capacities of a system, and (ii)
unveil the extent to which a system is focusing
on the discourse context when making decisions.
We will offer our testing environments to the re-
search community through a platform that pro-
vides datasets and scripts and a table to trace the
results of content-based systems.11
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Abstract

In this paper, we investigate similarities be-
tween discourse and argumentation structures
by aligning subtrees in a corpus containing
both annotations. Contrary to previous works,
we focus on comparing sub-structures and not
only relation matches. Using data mining tech-
niques, we show that discourse and argumen-
tation most often align well, and the double an-
notation allows to derive a mapping between
structures. Moreover, this approach enables
the study of similarities between discourse
structures and differences in their expressive
power.

1 Introduction

This paper presents preliminary results in align-
ing different text structure representations. Using
graph and redescription mining, we compare ar-
gumentative and discourse trees. The former rep-
resents the way arguments are organized through
support or attack relations, the latter accounts for
the coherence of texts by linking segments with
semantico-pragmatic relations.

Aligning structures such as argumentation and
discourse trees could help to understand the links
between these representations, to build some
bridges between theories, or to allow a better un-
derstanding of the expressive power of the differ-
ent formalisms.

The arg-microtexts-multilayer corpus1 (Stede
et al., 2016) provides three representations of short
texts: RST trees (Mann and Thompson, 1988),2

SDRT graphs (Lascarides and Asher, 2007), and
argumentation (ARG) structures as described in
(Peldszus and Stede, 2013), based on Freeman’s
theory (Freeman, 1991).

In this preliminary study, we focus on RST and
ARG annotations. We propose to describe each

1https://github.com/peldszus/
arg-microtexts

2https://www.sfu.ca/rst/

text by two views, one corresponding to the set
of subtrees extracted from the RST tree, and the
other to the subtrees extracted from the ARG tree.
The best alignment between subtrees is computed
thanks to a redescription mining approach.

2 Related Work

A manual analysis of the correspondences be-
tween RST and argumentation relations (Peldszus
and Stede, 2016) has already shown that a 1-to-1
mapping leads to some mismatches. For exam-
ple, 39% of the supports, 72% of the rebuts,
and 33% of the undercuts do not have a cor-
responding RST edge. These mismatches have
been explained by granularity differences in anno-
tations. Thus, we propose here to consider align-
ment at the level of subtrees allowing more com-
plex combinations of relations.

Cabrio et al. (2013) showed that 5 Argumenta-
tion Schemes (AS) from (Walton et al., 2008) can
be mapped to Penn Discourse TreeBank (PDTB)
relations (Prasad et al., 2008). They built an hy-
pothetical mapping of AS to PDTB relations, and
extracted 10 examples from the PDTB. Two an-
notators had to say whether the AS definition was
relevant to the example, and the measured Cohen’s
kappa showed a significant agreement (κ = 0.71).
Though their goal was to study the link between
argumentation and discourse, their approach was
based on both human hypothesis and human anno-
tation. Unlike them, we propose an automatic ap-
proach based on data mining. To our knowledge,
it is the first generic and systematic approach for
mapping discourse and argumentation.

3 Methodology

The three-step process aims at finding an exhaus-
tive and systematic alignment over the corpus be-
tween “parts" of the RST and “parts" of the ARG
representations. First, for each text, its RST and
ARG representations are respectively transformed
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Figure 1: Text micro_b006 annotated in ARG and RST
and trees derived from annotations

into two labeled trees. Then, RST and ARG trees
being considered separately, subgraph mining ex-
tracts all subtrees common to at least 2 texts. Each
subtree becomes a feature used for describing one
of the two views (i.e. RST and ARG) of each text.
In the last step, redescription mining searches for
alignments between features of the RST view and
features of the ARG view.

3.1 Encoding RST and ARG representations
into trees

RST and ARG representations are encoded into
two distinct trees, refered as initial RST or ARG
trees in the following. In both ARG and RST trees,
we label CC the root node, to represent the central
claim and the main nucleus respectively.3

As we do not consider the text but only the
structure, and because we do not consider the se-
quentiality of the units in the texts proposed by
(Wachsmuth et al., 2017), other nodes are left
unlabeled (-). These unlabeled nodes represent
the Argumentative Units (AUs) in ARG trees and
the Discourse Units (DUs) in RST trees.4 La-
bels on the edges correspond to the argumenta-
tive or discursive relations between AUs and DUs,
respectively. Trees are built in a straightforward

3The “most nuclear" unit or central unit (Stede, 2008).
4An AU can comprise multiple DUs, to express that mul-

tiple DUs form an argument only when combined.

way, except in ARG representations when some
relations are not directed to an AU but to a re-
lation (undercut for example). Inspired from
Wachsmuth et al. (2017), we make them target the
premise of the undercutted relation (see ARG tree
example in Figure 1).

3.2 Creating two views

In this step, we extract subtrees from the whole set
of RST initial trees on the one hand, and subtrees
from ARG initial trees on the other hand. Each
subtree is given a unique identifier and becomes a
boolean feature to be associated with texts: a text
has a feature if the subtree is in its initial tree.

Extracting subtrees gSpan (Graph-Based Sub-
structure Pattern Mining) (Yan and Han, 2002) is
an algorithm to extract frequent subtrees from a
graphset GS. Informally, a graph h is a subtree of
a graph g if h is contained in g, and h is frequent
if, given a support threshold σs, at least s graphs
of GS contain h. We applied gSpan,5 on the ARG
treeset and the RST treeset with σs = 2.

Building the data-tables From the gSpan runs,
we represent the boolean features in two binary

5We use the following python implementation: https:
//github.com/betterenvi/gSpan as we are inter-
ested in subtrees that include the central claim, we used the
algorithm on undirected graphs.
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data-tables, called views, where the rows corre-
spond to the texts and the columns to the features.

3.3 Redescription Mining
In data analysis, redescription mining (Galbrun
and Miettinen, 2017) is the task of finding two dis-
tinct characterizations of the same set of objects
(i.e. texts in this experiment). Inputs of redescrip-
tion mining are the views of the texts. The goal
is to find two boolean expressions, called queries,
q1 and q2, where q1 and q2 are formulae over the
features of the ARG view and the RST view re-
spectively, and where the support of q1 and q2 are
sufficiently similar, so that they explain (approx-
imately) the same set of texts. This similarity is
measured by the Jaccard index:

J(q1, q2) = supp(q1 ∧ q2)
supp(q1 ∨ q2) (1)

where supp(q) is the number of texts where q
occurs. In other words, Jaccard quantifies how big
the overlapping between the objects that evaluate
true in q1 and those that evaluate true in q2 is.

The exploration strategy of ReRemi is based on
atomic updates. First, the algorithm computes the
Jaccard for all possible pairs of atomic queries,
in other words all redescriptions that can be built
from one feature for each view. These pairs are
ranked following their Jaccard in a decreasing or-
der and the n best pairs are kept. Starting with
the best pair, the algorithm applies operations (ad-
dition, deletion, edition) on either query to im-
prove the candidate redescription until no further
improvement of the Jaccard can be done. The
first redescription has been built. The algorithm
then iterates on the remaining best pairs. We use
the ReReMi Algorithm (Galbrun and Miettinen,
2012) implemented in Siren with the predefined
parameters of the tool. Conjunctions and disjunc-
tions are allowed in the queries but the length of a
query is restricted to 4. This length restriction has
an impact on the redescriptions that are found. The
algorithm must maximize the Jaccard with maxi-
mum 4 features in each query. Thus some patterns
that we may want to observe do not appear in the
queries, because if they where used instead of an-
other, they will make the Jaccard lower.

4 Data

The corpus contains 112 micro-texts, each of them
answering a controversial issue (e.g., “Should
Germany introduce the death penalty?"). We

use 2 of the 3 types of annotations provided:
the RST and argumentation representations (Peld-
szus and Stede, 2015). RST trees are annotated
with 28 relations, with 2 to 12 relations per tree,
the most frequent relations are: reason (180),
concession (65), list (63), conjunction
(44), antithesis (32), elaboration (37),
and cause (20). ARG trees have 2 to 9 rela-
tions, 5 distinct relations are annotated, the most
frequent being support (263), rebut (108) and
undercut (63).

gSpan produces 311 RST and 98 ARG features,
both sharing at least 2 objects.6 The most frequent
RST feature occurs in 105 texts while the most fre-
quent ARG feature occurs in 94 texts. Only 22
RST features are shared by more than 10 texts, and
18 ARG features are shared by more than 13 texts.

5 Results

q1 q2 J(q1,q2) # texts

Rd1 a57 r40 ∨ r65 ∨ r123 0.691 54
Rd2 a58 r61 ∨ r119 ∨ r125 0.351 13
Rd3 a23 ∨ a59 r125 0.3 8

Table 1: Examples 3 redescriptions. aX and rX corre-
spond resp. to ARG and RST subtrees.

Table 1 gives three redescription examples over
the 31 obtained. For reason of space, we mainly
comment and discuss these three redescriptions.
Rd1 has the highest Jaccard value (0.691). The
support value is 54, meaning that 54 texts share
both the left and the right part of the redescription.
Rd2 is a specialisation of Rd1, and, finally, Rd3
is a redescription where the conjunction is on the
argumentation side. Subtrees corresponding to the
query features are drawn in Figure 2, 3 and 4.

CC

__

sup sup

CC

_

_
list

reason

CC

__

reason reason
CC

_
motivation

a57 r123 r65 r40

Figure 2: Subtrees corresponding to features of Rd1.

The 54 texts described by Rd1 all contain fea-
ture a57 in their ARG tree, but the disjunction
on the RST query emphasizes a difference in the
granularity of ARG and RST formalisms. More
precisely from the 54 texts, 30 contain r123, 22

6Because the parameter σs = 2 is given to gSpan.
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Figure 3: Subtrees corresponding to features of Rd2.
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Figure 4: Subtrees corresponding to ARG features of
Rd3, for r125 feature see Figure 4

contain r65, 2 contain r40. In other words, in
half of the data, when the ARG structure con-
tains two support pointing to the CC, the RST
tree includes either a reason relation followed
by two list, or two reason relations, or one
motivation directed to the CC. The objects de-
scribed by Rd2 and Rd3 are also described by
Rd1 so Rd2 and Rd3 can be seen as specialisa-
tions of Rd1. Rd2 can be read in the same way as
Rd1, namely from 23 texts containing a58, 13 are
aligned with either r61 (3), or r119 (3) or r125
(7). Contrary to Rd1 and Rd2, the disjunction
on the ARG side in Rd3 suggests that the feature
r125 (appearing 8 texts) can be mapped into two
different ARG structures: a59 which concerns 2
texts, and a23 which concerns 5 texts.

6 Discussion

A 1(ARG)-to-many(RST) mapping: One in-
teresting question that arises, when looking at
Rd1, concerns the disjunction on the discourse
side, i.e. different discourse structures that rep-
resent the same argumentative structure. Thus,
this redescription could be an illustration of granu-
larity difference between the two representations,
RST being more fine-grained than ARG. However,
by looking more precisely at the texts, we distin-
guish two different issues related to granularity as
described below.

Granularity in labeling relations: We observe
that an edge labeled by a given ARG relation can
be aligned with RST edges with different labels.
The explanation could be that a limited set of 5 re-
lations is used to annotate argumentation while the
annotators were given a larger set of 28 relations

to annotate discourse.
As shown in (Peldszus and Stede, 2016), a

support relation can correspond in fact to sev-
eral distinct RST relations, most often reason
and justification (found in another re-
description), but also motivation, as also
found via our extraction procedure. The lower fre-
quency of motivation compared to reason
could come from the fact that the latter is more
generic, the former being used only to motivate
actions (Carlson and Marcu, 2001).

Granularity in structure: Rd1 seems to imply
a similarity between RST structures described by
r123 and r65, that is a list embedded under
a reason, and two reason directed to the CC.
The list relation links comparable items, which
is not mandatory for two reasons annotated in-
dependently. This fine level of granularity is not
expressed in ARG trees.

Moreover, for the two cases with a
motivation relation, we notice that the
embedded node is in fact annotated either with a
list or with a conjunction, the latter being
very similar to the former and thus corresponding
to another compatible structure. Note here that
we do not extract a subtree parallel to r123
but involving a motivation by applying our
method: while this structure exists, it only appears
once in the data, and thus does not meet our
minimum support criterion. Lowering the support
treshold is an option, it could be compared to the
use of a relation grouping to allow an automatic
recognition a priori of similar RST labels.

If we assume that discourse structures are more
fine grained than argumentation structures, we
could parametrised ReReMi to extract only atomic
ARG queries to obtain a redescription of each sin-
gle ARG structure. However, the following study
of Rd3 comes to contradict this hypothesis.

Depth and width of the subtrees: Some re-
descriptions with lower support and Jaccard con-
cern deeper or larger subtrees than in Rd1. For
example in Rd2, the a58 subtree includes a57,
r125 includes r123, and r61 includes r65.

It thus seems meaningful to consider that a
deeper/larger structure in one view is aligned with
a deeper/larger structure in the other view. Thus,
we would have liked to consider Rd2 as a special-
isation of Rd1, emphasizing the following: when
embedded within a relation matching a support,
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the multinuclear RST relations conjunction
and list express an additional support in
ARG.

However, we observe that a new subtree,
namely r119, occurs in the RST part of Rd2.
This non parallel new subtree being mapped to
a58 still needs further investigation.

A many(ARG)-to-1(RST) mapping: As RST
structures are more fine grained than argumenta-
tion structures, we could expect ARG structures to
be aligned with a disjunction of RST structures.
However, the other way around is also true. Rd3
emphasizes that some RST (r125) structures are
aligned with a disjunction of ARG structures.

The r125 RST tree contains 3 lists in
a reason related to CC. On the ARG side,
a23 contains two supports and a sequence of
rebut and undercut directed to the CC. The
third expected support for a23 to partially map
r125 comes from the following assertion: if an X
undercuts a Y, which in turn rebuts the CC,
then X is in a support relation to CC.

The pattern a59 is founded in 5 texts, but only 2
of them contain r125 in their RST representation.
Here, 4 support nodes in ARG are mapped to 3
lists in RST. For these 2 texts, the fourth ex-
pected support relation comes from deeper ele-
ments in the trees. In one of the texts, a segment
that is in a e-elaboration in one of the list
element is used as a support in the ARG tree. In
the second text, a restatement plays the same
role. Thus, nodes involved in these substructures
are split into two supports in the ARG annota-
tion. Despite a small Jaccard, this many-to-1 map-
ping is very informative.

Weakness due to tree representation: One
weakness of our tree representation is that we omit
the position of the segments in the text. Doing this
for ARG and RST subtrees extraction allows to
consider the subtrees regardless of their place in
the text. However, features aligned by a redescrip-
tion do not necessarily refer to the same part of the
text.

In Figure 1, while text b006 illustrates Rd1,
the segments contained in a57 and r123 do not
correspond: a correct mapping would align both
support in ARG with the conjunction em-
bedded in the reason in RST (segments 2 and
3). In the same way, the ARG undercut and
rebut in sequence would have been mapped to

the RST concession and reason in sequence
(segments 4 and 5).

7 Conclusion

The alignment of text structures can be done with
redescription mining applied on subtrees. The au-
tomatic process, compared to manual methods,
enables a systematic comparison of different for-
malisms. Applied to a small corpus of argumen-
tative texts, this preliminary experiment demon-
strates the effectiveness of our approach to com-
pare structures in different frameworks, but also to
get insights on the encoding used within a specific
formalism.

Several improvements are currently under
study. First, as we only used the predefined pa-
rameters of ReRemi, we can reparametrize it. We
can restrict the ARG side of the redescription to an
atomic query in order to associate a conjunction
of RST subtrees to each ARG subtree. We may
also reparametrize ReReMi to get a higher num-
ber of redescriptions and possibly longer queries.
Indeed, the 4-features limitation in a query blocks
the emergence of more interesting features (deeper
subtrees) in the redescriptions.

Second, tree representations should include
links to text segments in order to enable a fairer
alignement between ARG and RST structures.

Finally, the methodology could also be ex-
tended to other formalisms (e.g. SDRT), or used
to provide a grouping of substructures from one
theory to another.
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Abstract
In this work we propose to leverage resources
available with discourse-level annotations to
facilitate the identification of argumentative
components and relations in scientific texts,
which has been recognized as a particularly
challenging task. In particular, we implement
and evaluate a transfer learning approach in
which contextualized representations learned
from discourse parsing tasks are used as input
of argument mining models. As a pilot appli-
cation, we explore the feasibility of using au-
tomatically identified argumentative compo-
nents and relations to predict the acceptance
of papers in computer science venues. In or-
der to conduct our experiments, we propose an
annotation scheme for argumentative units and
relations and use it to enrich an existing corpus
with an argumentation layer.1

1 Introduction

The growing number of scientific publications and
the shortening of the research-publication cycles
(Bornmann and Mutz, 2015) pose a challenge to
authors, reviewers and editors. The development
of automatic systems to support the quality assess-
ment of scientific texts can facilitate the work of
editors and referees of scientific publications and,
at the same time, be of value for researchers to
obtain feedback that can lead to improve the com-
munication of their results.

The quality assessment of scientific texts has
many dimensions, and each one involves different
levels of difficulties. While the relevance of the
problem at stake and the novelty of the solutions
proposed by the authors are of great significance
in terms of weighting the ultimate contributions of
the work, aspects such as the argumentative struc-
ture of the text are key when analyzing its effec-
tiveness with respect to its communication objec-
tives (Walton and Walton, 1989). A fine-grained

1Available at http://scientmin.taln.upf.
edu/argmin/scidtb_argmin_annotations.tgz.

assessment of the contributions made in research
articles requires to identify the main claims made
by the authors and to determine if the evidence
provided to support them is strong enough. Or,
in other terms, if both the structure and the con-
tents of the arguments proposed by the authors can
persuade a potential reader of the validity of their
contributions.

In addition to being useful for facilitating the as-
sessment of some quality aspects of a text, the au-
tomatic identification of argumentative units and
their relations–a set of related tasks known as ar-
gument mining–is a relevant problem in itself in
the context of knowledge mining (Mochales and
Moens, 2011). Being able to extract not only what
is being stated by the authors of a text but also
the reasons they provide to support it can be use-
ful in multiple applications, ranging from a fine-
grained analysis of opinions to the generation of
abstractive summaries of texts. As an example of a
potential application for argument mining, (Lippi
and Torroni, 2016) suggest the possibility of de-
veloping an argumentative ranking component in a
search engine so that it retrieves documents based
on claims and evidence on a given topic extracted
automatically from texts.

The tasks involved in the extraction of argu-
ments from text–including the identification of ar-
gumentative sentences, the detection of argument
component boundaries and the prediction of argu-
ment structures–are related to other text mining
tasks–including sequence labeling, text segmen-
tation, entity recognition and relation extraction–
which are in general tackled by means of super-
vised learning methods (Lippi and Torroni, 2016).
The lack of annotated data with argumentative in-
formation, however, presents a challenge when
trying to apply these well-known approaches to ar-
gument mining (Stab and Gurevych, 2017). This
is so, in part, due to the inherent difficulty of un-
ambiguously identifying argumentative elements
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in texts, which is reflected in the low levels of
inter-annotator agreement reached in general for
this task (Habernal et al., 2014). If this is true
in several knowledge domains, it poses a more
difficult problem in the case of scientific texts
due to their inherent argumentative complexity
(Kirschner et al., 2015; Green, 2015). We pro-
pose to address this challenge by leveraging data
annotated with discourse relations, as previous
works suggest potential benefits in linking dis-
course analysis and argument mining tasks (Peld-
szus and Stede, 2016; Stab et al., 2014; Cabrio
et al., 2013; Biran and Rambow, 2011; Green,
2015).

1.1 Contributions
• We propose to tackle the limitations posed

by the lack of annotated data for argument
mining in the scientific domain by leveraging
existing Rhetorical Structure Theory (RST)
(Mann et al., 1992) annotations in a corpus of
computational linguistics abstracts (SciDTB)
(Yang and Li, 2018). In order to do so:

1. We propose and test an annotation
scheme that we use to conduct a pi-
lot annotation experiment in which we
enrich a subset of the SciDTB corpus
with an additional layer of argumenta-
tive structures.

2. We explore the potential of a transfer
learning approach to improve the per-
formance of an argument mining model
trained with a small volume of data an-
notated with the proposed scheme.

• We report preliminary results on the pre-
diction of acceptance or rejection of scien-
tific papers in computer science conferences
based on the automatic identification of argu-
mentative components and relations in their
abstracts.

In this work we adopt a pragmatic perspective
in relation to exploring the predictive potential
of the argumentative structure of an abstract for
the acceptance or rejection of the corresponding
manuscript in a peer review process. We do not
intend to imply that the ultimate quality of the
papers–or even the abstracts–could be determined
solely by considering this limited information.

The rest of the paper is organized as follows:
in Section 2 we describe previous work, focus-
ing, in particular, on works aimed at identifying

arguments in scientific texts. In Section 3 we
describe the dataset used in our experiments and
our proposed annotation scheme for fine-grained
scientific argument mining. In Section 4 we de-
scribe our transfer learning experiments, their ex-
perimental settings and results and, in Section 5,
we do the same with the experiments aimed at
predicting the acceptance or rejection of papers in
conferences. Finally, in Section 6, we summarize
our main contributions and propose additional re-
search avenues as follow-up to the current work.

2 Related work

This work is informed by previous research in the
areas of argument mining, argumentation qual-
ity assessment and the relationship between dis-
course and argumentative structures and, from the
methodological perspective, to transfer learning
approaches. Due to space restrictions, we cannot
cover in detail all the relevant background work.
We refer the reader to (Lippi and Torroni, 2016)
for a thorough summary of argument mining ini-
tiatives in various domains and with different ap-
proaches. (Wachsmuth et al., 2017) provide a
comprehensive survey of quality assessment ap-
proaches in the context of computational argumen-
tation and categorize them in relation to how they
address logical, rhetorical and dialectical dimen-
sions of argumentation. (Pan and Yang, 2010)
provide an in-depth review of current trends in
transfer learning, including inductive, transductive
and unsupervised approaches. Furthermore, they
classify the different approaches based on what is
transferred: instances, feature representations, pa-
rameters or relational knowledge. A more direct
antecedent to our work is the research conducted
by Peldszus and Stede (Peldszus and Stede, 2016,
2015a; Stede et al., 2016), who annotated 112
argumentatively rich texts using RST and argu-
mentation schemes in order to study the relation-
ship between discourse and argumentation struc-
tures. The texts were generated in an experiment
in which several participants wrote short texts of
controlled linguistic and rhetoric complexity dis-
cussing a controversial issue from a pre-defined
list. Based on this corpus, the authors conducted
experiments in order to derive argumentative com-
ponents and relations from RST trees, compar-
ing three approaches: a transformation model, an
aligner based on sub-graph matching and an evi-
dence graph model (Peldszus and Stede, 2015b).
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Our work is one of few that deal with argu-
ment mining in scientific texts which, as men-
tioned in Section 1, is considered as a particularly
challenging domain (Kirschner et al., 2015; Green,
2015). (Stab et al., 2014) and (Kirschner et al.,
2015) carried out annotation studies with scien-
tific articles in educational research with binary ar-
gumentative and discourse relations (support, at-
tack, detail, and sequence). In order to calculate
the agreement between the annotators that partici-
pated in the process they developed a novel graph-
based agreement measure, which can identify dif-
ferent annotations with similar meaning, thus ob-
taining higher agreement than with standard mea-
sures. The evaluation of argument annotations is
still an open issue. (Stab et al., 2014) suggest
that it might be interesting to explore, for this
task, evaluation schemes that are able to deal with
multiple correct annotations such as those used
in text summarization. (Lauscher et al., 2018b)
analyze the information shared by rhetorical and
argumentative structure of scientific documents.
In order to do this, they add an argumentation
layer to the DrInventor Scientific Corpus (Fisas
et al., 2016), which includes 40 computer graph-
ics papers annotated with four layers including ci-
tation contexts, rhetorical role of sentences, sub-
jective information and summarization relevance.
The enriched corpus is used to trained new mod-
els for the automatic identification of claims and
evidence, which are made available as a web ser-
vice (Lauscher et al., 2018a). Some of the first
initiatives aimed at the automatic identification of
rhetorical and argumentative components in scien-
tific texts include the Argumentative Zoning (AZ)
model (Teufel et al., 1999, 2009) and the CoreSC
scheme (Liakata et al., 2012). While AZ consid-
ers annotations for knowledge claims made by the
authors of scientific articles, CoreSC associates re-
search components to the parts of the texts describ-
ing them, thus obtaining a readable representation
of the research process described by the paper.
Both of them are sentence-based schema that are
focused on the identification of the components
and do not consider the relations between them.
(Feltrim et al., 2006) adapted the AZ model for
the automatic annotation of scientific abstracts in
Portuguese (AZPort). The AZPort model was in-
tegrated as a module of SciPo,2 a web-based tool
aimed at supporting novice writers of academic

2http://www.nilc.icmc.usp.br/scipo/

texts: given an abstract, the system classifies its
sentences by means of AZPort and, based on a
set of rules for well-formed rhetorical structures,
it provides feedback for potential improvements
(e.g., re-ordering the elements of the text or adding
missing content). More recently, (Vargas-Campos
and Alva-Manchego, 2016) adapted the AZPort
model to Spanish (AZEsp), which was also in-
tegrated into a computer-assisted writing tool for
computer science dissertations in Spanish (Sci-
Esp).

3 Annotated data

In order to explore the possibility of leveraging
discourse information for the identification of ar-
gumentative components and relations we add a
new annotation layer to the Discourse Dependency
TreeBank for Scientific Abstracts (SciDTB) (Yang
and Li, 2018). SciDTB contains 798 abstracts
from the ACL Anthology (Radev et al., 2013) an-
notated with elementary discourse units (EDUs)
and relations from the RST Framework. Poly-
nary discourse relations in RST are binarized in
SciDTB following a criteria similar to the “right-
heavy” transformation used in other works that
represent discourse structures as dependency trees
(Morey et al., 2017; Stede et al., 2016; Li et al.,
2014).

We consider a subset of the SciDTB corpus con-
sisting of 60 abstracts from the Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) and transformed
them into a format suitable for the GraPAT graph
annotation tool (Sonntag and Stede, 2014)3, which
had been previously tailored to the specificities
of our proposed annotation scheme, described in
Section 3.1.

The corpus enriched with the argumentation4

level contains a total of 327 sentences, 8012 to-
kens, 862 discourse units and 352 argumentative
units linked by 292 argumentative relations.

3.1 Annotation scheme

Several argumentation mining works (Lippi and
Torroni, 2016) use claims and premises as basic
argumentative units. In the case of scientific dis-
course, however, it is frequent to find that claims

3http://angcl.ling.uni-potsdam.de/
resources/grapat.html

4The annotations are made available to download at
http://scientmin.taln.upf.edu/argmin/
scidtb_argmin_annotations.tgz
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are not explicitly stated in an argumentative writ-
ing style but are instead left implicit (Hyland,
1998). The description of the problem addressed
in the paper, for instance, usually conveys implicit
claims in relation to the relevance of the problem
at stake and/or the adequacy of the proposed ap-
proach. We introduce a fine-grained annotation
scheme aimed at capturing information that ac-
counts for the specificities of the scientific dis-
course, including the type of evidence that is of-
fered to support a statement (e.g., background in-
formation, experimental data or interpretation of
results). This can provide relevant information, for
instance, to assess the argumentative strength of a
text. The types of proposed units in our scheme
were considered so they can be mapped–even if
with a different level of granularity–to concepts in
CoreSC (Liakata et al., 2010) and AZ categories,
which would enable additional research on the po-
tential of using existing annotated corpora for ar-
gument mining tasks. Like (Peldszus and Stede,
2016)–and in contrast with CoreSC and AZ–we
consider EDUs as the minimal spans that can be
annotated. Argumentative units can, in turn, cover
multiple sentences.

The proposed units include:

• proposal (problem or approach)
• assertion (conclusion or known fact)
• result (interpretation of data)
• observation (data)
• means (implementation)
• description (definitions/other information)

In line with (Kirschner et al., 2015), we adopt in
our annotation scheme the classic support and at-
tack argumentative relations and the two discourse
relations detail and sequence.

Figure 1 shows a subset of the argumentative
components and relations annotated in an abstract
from (Zhang and Wang, 2014),5 including a pro-
posal and two supporting units: an assertion and a
result. Figure 2 shows the original discourse units
and relations as annotated in SciDTB.

In the subset of SciDTB annotated for our ex-
periments, the types of argumentative units are
distributed as follows: 31% of the units are of type
proposal, 25% assertion, 21% result, 18% means,
3% observation, and 2% description. In turn, the
relations are distributed: 45% of type detail, 42%

5http://aclweb.org/anthology/D14-1033

Figure 1: Partial argumentative structure

Figure 2: Partial discourse structure

support, 9% additional, and 4% sequence. No at-
tack relations were identified in the set of currently
annotated texts. When considering the distance6

of the units to their parent unit in the argumenta-
tion tree, we observe that the majority (57%) are
linked to a unit that occurs right before or after it
in the text, while 19% are linked to a unit with a
distance of 1 unit in-between, 12% to a unit with a
distance of 2 units, 6% to a unit with a distance of
3, and 6% to a unit with a distance of 4 or more.7

6By distance we refer to the number of argumentative
units that occur between two units in the text.

7According to the position of the parent unit, there are 200
relations pointing forward and 92 in which the parent occurs
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4 Transfer learning experiment

The first set of experiments, described in this sec-
tion, are aimed at exploring the potential of apply-
ing a transfer learning method to improve the per-
formance of argument mining tasks trained with
a small corpus of 60 abstracts by leveraging the
discourse annotations available in the full SciDTB
corpus.

4.1 Tasks

We define the following set of argument mining
tasks:

• AFu (argumentative function): Identify the
boundaries and argumentative functions of
the components. In the example in Fig. 1,
it would imply to identify the boundaries of
the three nodes and the two support relations
that link them.
• ATy (argumentative unit): Identify the

boundaries and types of the components. In
the example, the proposal, assertion and a re-
sults units.
• APa (argumentative attachment): Identify

the boundaries of the components and the
relative position of the parent argumentative
unit. For instance, the assertion unit in Fig.
1 is attached to the proposal unit with a rel-
ative distance of one unit in the forward di-
rection (as the assertion occurs right before
the proposal in the text). The result unit, in
turn, is attached to the proposal with a dis-
tance of four units in the background direc-
tion (the units that occur between these two
nodes are omitted in the figure).

4.2 Experimental setups

We train each of the tasks described in 4.1 sepa-
rately and compare the results obtained with those
obtained by an inductive transfer learning method
in which we use encoders trained with the RST an-
notations available in the SciDTB corpus. These
encoders are then used to produce contextualized
representations of the input tokens that are fed to
the argument mining learning processes.

The discourse parsing tasks considered to train
the specialized encoders are:

• DFu (discourse function): Identify the
boundaries and discourse roles of the EDUs

before in the text.

(attribution, evaluation, progression, etc.).8

• DPa (discourse attachment): Identify the
boundaries of the EDUs and the relative po-
sition of the parent units in the RST tree.

The discourse tasks (DFu and DPa) are trained
with the 738 abstracts left in the SciDTB corpus
when excluding the 60 abstracts annotated with
arguments. This is done in order to avoid intro-
ducing a bias that would not reflect the results ob-
tained when no discourse annotations are avail-
able.

All the argument mining models (AFu, ATy,
APa) are trained and evaluated in a 10-fold cross-
validation setting.

In all cases the models are generated by means
of bi-directional long short-term memory (BiL-
STM) networks, as this type of architecture has
proven to perform reasonably well in argument
mining tasks across different classification scenar-
ios (Eger et al., 2017). In order to simplify the
experiments and the interpretation of their results
we use the same architecture for all tasks: two
layers of 100 recurrent units, Adam optimizer,
naive dropout probability of 0.25 and a condi-
tional random fields (CRF) classifier as the last
layer of the network. We use, for the BiLSTMs,
the implementation made available by the Ubiqui-
tous Knowledge Processing Lab of the Technische
Universität Darmstadt (Reimers and Gurevych,
2017).9 As our intention is to compare the dif-
ferent approaches and not necessarily obtain the
best possible models for these tasks, no hyper-
parameter optimization is done in these experi-
ments and, in all of the cases, the networks are
trained for 100 epochs.

All of the tasks are modeled as sequence la-
beling problems in which the tokens are tagged
using the beginning-inside-outside (BIO) tagging
scheme. The tokens are encoded as the concatena-
tion of 300-dimensional dependency-based word
embeddings (DEmb)10 (~k) (Komninos and Man-
andhar, 2016) and 1024-dimensional contextual-
ized word embeddings (ELMo) (~e) (Peters et al.,
2018). In these experiments we use the 5.5 billion-
token version of ELMo trained with Wikipedia
and monolingual news from the WMT 2008-2012

8Please refer to (Yang and Li, 2018) for a description of
the discourse roles used in SciDTB.

9https://github.com/UKPLab/
elmo-bilstm-cnn-crf

10https://www.cs.york.ac.uk/nlp/extvec/
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corpora.11 For the experiments with the RST en-
coders we include the 200-dimensional embed-
dings obtained from the concatenation of the back-
ward and forward hidden states of the top layers
of the DFu or DPa models (RSTEnc) (~f and ~p,
respectively). Table 1 summarizes the sets of em-
beddings used in these experiments and their di-
mensions.

Each argument mining task is paired with one
discourse parsing task for the transfer learning ex-
periments. While AFu and ATy are paired with
DFu, APa is paired with DPa. This means that the
input for the AFu and ATy tasks is obtained as the
concatenation of the vectors [~k,~e, ~f ], while in the
case of APa the input is [~k,~e, ~p].

Abbreviation Notation Dimensions
DEmb ~k 300
ELMo ~e 1024
GloVe ~g 200

RSTEnc (DFu/DPa) ~f / ~p 200

Table 1: Word embeddings used in the experiments

4.3 Results

We adopt the ConNLL criteria for named-entity
recognition12 to evaluate the performances ob-
tained in the identification of argumentative
components and relations. Table 2 shows
the average F1-measures obtained for each
of the settings considering the epochs 10 to
100.13 The argument mining models trained
with the representations produced by the RST en-
coders (DEmb+ELMo+RSTEnc) yield better per-
formances, with gains of 0.03, 0.04 and 0.02 F1
points for AFu, ATy and APa, respectively, over
the models trained solely with the dependency-
based and ELMo embeddings (DEmb+ELMo).

Setting AFu ATy APa
DEmb+ELMo 0.66 0.63 0.38

DEmb+ELMo+GloVe 0.65 0.65 0.38
DEmb+ELMo+RSTEnc 0.69 0.67 0.40

Table 2: Average F1-measures in epochs 10-100

11https://allennlp.org/elmo
12A true positive is considered when both the boundary and

the type of the entity match.
13The epochs before the 10th are not significant as the

models have not had enough time to learn anything.
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Figure 3: Trend lines for F1-measures in epochs 10-
100 for AFu
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Figure 4: Trend lines for F1-measures in epochs 10-
100 for ATy
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Figure 5: Trend lines for F1-measures in epochs 10-
100 for APa
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In order to determine whether the better perfor-
mance of the RST encoders is due to the knowl-
edge conveyed by the task-specific representations
we conducted an additional experiment in which
we concatenated 200-dimensional GloVe embed-
dings14 (Pennington et al., 2014) (~g) obtaining
1524-dimension embeddings [~k,~e,~g] used as in-
put of each of the argument mining models. In
this case, the results obtained are mixed, with
an increase in performance of 0.02 F1 points in
average–for the epochs 10 to 100–for ATy, a worse
performance of 0.01 F1 points for AFu and no dif-
ference in performance for APa. The models with
the GloVe embeddings (DEmb+ELMo+GloVe)
have, therefore, worse performances in average of
0.04, 0.02 and 0.02 F1 points for AFu, ATy and
APa with respect to the models that include the
embeddings obtained by means of the RST en-
coders.

Figures 3, 4 and 5 show the trend lines of F1-
measures obtained with the different models for
the epochs 10 to 100 for the AFu, ATy and APa
tasks, respectively. The graphs show that the mod-
els with information from the RST encoders not
only learn better the argument mining tasks but
they also do it in less time with respect to the other
settings.

These results support out initial hypothesis in
the sense that transferring discourse knowledge
by means of representations learned in discourse
parsing tasks can contribute to improve the perfor-
mance of argument mining models trained with a
rather small number of instances.

5 Acceptance prediction experiment

As a pilot application we explore the possibility
of predicting the acceptance/rejection of papers in
computer science conferences15 based on the an-
notations generated by the best argument mining
models of the experiments described in Section 4.

Quality assessment metrics that consider ele-
ments such as clarity and simplicity, lack of re-
dundancy and comprehensiveness of scientific re-
porting have been developed for abstracts in other
domains–in particular, in life sciences–(Timmer
et al., 2003). These instruments were used in
studies that show that abstracts with higher formal

14We used the 6 billion tokens versions trained with
Wikipedia 2014 and Gigaword 5 available at https://
nlp.stanford.edu/projects/glove/

15In particular, in the areas of neural-based systems and its
applications to speech and language.

quality scores–as measured by human experts–are
more frequently accepted for presentations in con-
ferences (Timmer et al., 2001). We do not be-
lieve that these results can be directly extrapo-
lated to the quality assessment of scientific ab-
stracts in computer science, an area in which full
manuscripts are most frequently considered for re-
view and where abstracts have less fixed struc-
tures. Furthermore, clearer links between the for-
mal quality of scientific reporting and the overall
quality of research in computer science still need
to be established. Considering all these limita-
tions, we were interested in exploring whether the
automatically identified argumentative structure of
the abstracts could reflect some quality aspects of
the full manuscripts and if this, in turn, could con-
tribute to predict their acceptance in conferences
in a specific research area in the field of computer
science.

5.1 Dataset
As training set for the acceptance prediction ex-
periment we use 117 abstracts of manuscripts
submitted to the Compact Deep Neural Net-
work Representation with Industrial Applications
(CDNNRIA) and the Interpretability and Robust-
ness for Audio, Speech and Language (IRASL)
workshops held in the context of the Thirty-
second Conference on Neural Information Pro-
cessing Systems (NIPS 2018). As test set we use
30 abstracts of manuscripts submitted to the Sixth
International Conference on Learning Represen-
tations (ICLR 2018). All of the abstracts were
collected from the OpenReviews website (Soergel
et al., 2013).16

The distribution of accepted/rejected papers in
the training and test sets is shown in Table 3

Set Conference Accepted Rejected
Train CDNNRIA 35 23
Train IRASL 30 29

55 52
Test ICLR 15 15

Table 3: Accepted/rejected papers in training and test
sets

5.2 Experimental setup
The CDNNRIA, IRASL and ICLR abstracts are
used as input to the AFu, ATy and APa models

16https://openreview.net/
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described in Section 4 obtaining sequences of ar-
gumentative units, types and parent attachments.
These sequences are then used as features to train
and evaluate a binary classifier aimed at predict-
ing the acceptance or rejection of the correspond-
ing papers. Table 4 shows sample training/test
instances. As the number of argumentative units
identified in each abstract might differ we use
padding values (nofunc, notype and 100 for AFu,
ATy and APa, respectively) to generate training
and test instances with a fixed number of features
(equal to three times the maximum number of ar-
gumentative units identified in the dataset).

x1 x2 ... xn
none additional ... support

support support ... none
... ... ... ...

support nofunc ... nofunc
proposal assertion ... assertion

result assertion ... proposal
... ... ... ...

observation notype ... notype
0 1 ... 1
1 1 ... 0
... ... ... ...
-5 100 ... 100

y1 y2 ... yn
REJECT ACCEPT ACCEPT

Table 4: Example of input instances to the classifier

Considering that we are dealing with a small
set of features with a reduced number of poten-
tial values for each one, we use a decision tree
algorithm for our pilot classification experiment.
In addition to the training and evaluation speed
of the algorithm we consider that the higher in-
terpretability of the results–by examining the de-
cision points–can also contribute to assess to what
degree the different elements of the predicted ar-
gumentative structure are used in the classifica-
tion. We use Weka’s implementation of the C4.5
algorithm (Quinlan, 1993) (J48) with default pa-
rameters with the exception of the confidence fac-
tor used for pruning the tree, which was selected
evaluating the different models obtained against
a random split of 20% of the test set used for
validation.17 As the training set is not perfectly

17weka.classifiers.trees.J48 -C0.6 -M2

balanced, we pre-process the data with Weka’s
ClassBalancer algorithm, which assigns weights
to each instance so that each class has the same
total weight.

5.3 Results
The classifier trained with the argumenta-
tive units and relations extracted from the
CDNNRIA/IRASL abstracts has a performance of
0.67 F1-score when evaluated with the training set
obtained from processing the ICLR abstracts,18

0.17 F1 points above a random binary classifi-
cation in a balanced set. As expected, the main
decision points in the tree correspond, broadly,
to those attributes that are also ranked higher
when measuring their contribution to reduce the
entropy with respect to the class.19 Observing
these features, we can see that the most relevant
decision elements are the parent attachment
of first argumentative unit, the argumentative
functions of the first two units and the argumen-
tative type of the first unit. Also relevant are the
features that mark the end of the sequences of
argumentative types and functions for the majority
of the instances. This means that the number of
identified units also have a relevant role in the
predictions. However, the number of units by
themselves is not a good predictor of the abstract’s
class. In fact, executing the same experiment but
replacing the non-padding values for function,
type and attachment for fixed values we obtain
an F1-measure of 0.59 due, in particular, to a
higher number of false negatives (accepted papers
classified as rejected).

Features P R F1
Arg. units alone 0.67 0.53 0.59

Arg. units with types,
functions and parents

0.67 0.67 0.67

Table 5: Precision, recall and F1-measures for the ac-
ceptance prediction classifiers with and without fine-
grained argumentative information

6 Conclusions and future work

In this work we explored the potential of lever-
aging existing discourse-annotated corpora to im-

1820 of the abstracts were correctly classified and ten were
mis-classified: five as false positives and five as false nega-
tives

19As calculated by means of Weka’s InfoGainAttributeE-
val algorithm.
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prove the performance of fine-grained argument
mining models trained with a limited number of
examples. In order to test our hypothesis, we pro-
posed an annotation scheme and used it to en-
rich, with a new layer of argumentative struc-
tures, a subset of a corpus previously annotated
with discourse-level units and relations. Promis-
ing results are obtained by implementing an in-
ductive transfer learning method in which con-
textualized representations obtained by means of
encoders trained with discourse parsing tasks are
used as input of argument mining models. As a
potential application of the annotations produced
by the argument mining models, we implemented
a simple classifier aimed at predicting the potential
acceptance/rejection of computer science papers
according to the argumentative structure of their
abstracts. The results of these preliminary experi-
ments are auspicious and motivate us to continue
working in this area. As a first step in this direc-
tion, we plan to extend the coverage of the argu-
mentative layer of annotations to the full SciDTB
corpus. We expect this to become a valuable re-
source in argument mining research in scientific
texts which, as mentioned, has been identified as a
particularly challenging domain.

The obtained results open several paths up for
additional research, including the implementation
of other transfer learning approaches–e.g., multi-
task learning settings20–as well as other neural
architectures–including attention-based architec-
tures, which have proven to achieve good results
in argument mining tasks (Stab et al., 2018). As
mentioned in Section 3.1, we are also interested
in exploring the possibility of leveraging other
existing tools and resources to facilitate the au-
tomatic identification of argumentative structures
and relations, such as corpora annotated with dif-
ferent schema–including variants of CoreSC and
AZ. We also intend to expand our acceptance pre-
diction experiments using the PeerRead dataset
(Kang et al., 2018),21 which has a greater cover-
age than the NIPS and ICLR subsets that we used
in our experiments. This dataset contains, in addi-
tion to the acceptance/rejection decisions, scores
for different aspects of the papers–including sub-
stance and clarity, among others–, which would
allow us to explore in more depth whether the ar-

20We conducted preliminary experiments in this area with
mixed results, so we plan to continue investigating this ap-
proach in order to clarify its true potential.

21https://github.com/allenai/PeerRead

gumentative structure of the abstracts–and, poten-
tially, other sections–relate to more specific qual-
ity aspects of the manuscripts.
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Språkbanken Text

Department of Swedish
University of Gothenburg

stian.rodven.eide@svenska.gu.se

Abstract

As part of a larger project on argument
mining of Swedish parliamentary data, we
have created a semantic graph that, together
with named entity recognition and resolution
(NER), should make it easier to establish con-
nections between arguments in a given debate.
The graph is essentially a semantic database
that keeps track of Members of Parliament
(MPs), in particular their presence in the par-
liament and activity in debates, but also party
affiliation and participation in commissions.
The hope is that the Swedish PoliGraph will
enable us to perform named entity resolution
on debates in the Swedish parliament with a
high accuracy, with the aim of determining to
whom an argument is directed.

1 Introduction

While argument mining still is a young task in
the field of computational linguistics, it has re-
ceived much attention during the last five years.
Parliamentary data is not only an ideal applica-
tion of this, but also often a treasure trove of train-
ing data, given its standardised language and de-
tailed accompanying metadata. Debates from the
Swedish parliament, which will be the main fo-
cus for this project, are available from 1971 until
the present date, with particularly detailed meta-
data present from 1993 and onward. The ultimate
task of our project is to evaluate and develop tools
for argument mining on these debates. As a first
step, we have created the Swedish PoliGraph, a se-
mantic graph to aid us in achieving our goal. Fol-
lowing the completion of this graph, we will use
it to improve upon methods for NER that, in turn,
can assist in determining the structure of discourse
present in the various debates in the Swedish par-
liament.

2 About the Swedish Parliamentary Data

Coinciding with the ratification of Lag (2010:566)
om vidareutnyttjande av handlingar från den of-
fentliga förvaltningen, a law commonly known as
PSI-lagen ‘re-use of Public Sector Information’,
Riksdagens öppna data ‘parliamentary open data’,
from here on abbreviated as RÖD) was published
in 2010. A massive collection of structured con-
tent from the databases of the Swedish parliament,
RÖD is continuously updated, both with new data
and with the gaps in older data filled in.

The available data is sorted into five categories:
Documents, MPs, voting results, speeches and
calendar. Of these, the documents constitute the
largest category, with a substantial amount of data
from 1971 and onward. The categories for MPs
and voting results consist mostly of metadata,
while speeches are transcripts of both addresses
and replies, accompanied by extensive metadata,
starting from 1993.1

In addition to their availability through a well
documented API, the data can be downloaded in
several formats, including HTML, plain text, CSV,
XML, JSON and SQL.

For the initial stages of this project, we choose
to focus on the speeches category (anföranden in
Swedish), as this dataset is relatively consistent,
fairly complete and contains the most metadata.
Once we have developed our methods for argu-
ment mining, we can extend the data to include
older protocols from debates dating back to 1971.
A speech in this context refers to an entry in a
debate, and the term will be used in this sense
throughout the paper.

1An exhaustive description of the various available
datasets cannot be given in this paper. The documents cat-
egory in particular contains 40 different types of docu-
ments. Please see the RÖD website at https://data.
riksdagen.se/ and Riksdagen’s page for descrip-
tions of the various document types at https://www.
riksdagen.se/sv/Dokument-Lagar/.
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3 Development Details

3.1 The RÖD Documents
After removing a small number of ill-formed doc-
uments, we ended up with 325 202 speeches in our
dataset. Starting with the downloads from RÖD in
JSON format, each speech is one document, and
constitutes one entry in a debate in the Swedish
parliament. Most debates are on specific proposi-
tions from either the government, parliamentari-
ans or commissions, though there are also weekly
meetings in the parliament where MPs can address
ministers directly with questions. Debates usually
end with a voting session, the details of which are
stored in a different dataset. At a later stage, we
will combine our argument analysis with the votes
in order to better understand the relationship be-
tween debates and the resulting votes.

3.2 Speeches
A typical speech document contains the meta-
data as outlined in table 1. Of particular impor-
tance here is dok id, which designates the meeting
in question, anforande nummer, referring to the
number of this speech in the chronological order
of speeches during that meeting, and rel dok id,
which is the ID of the proposition that is being de-
bated. In order to map a single debate, we there-
fore need to:
1. Find all speeches with a given rel dok id.
2. Determine the meeting(s) this was debated in.
3. Establish the chronological order of the

speeches during these meetings.
4. Analyse each speech and attempt to determine

which previous speech or speeches (if any)
was/were addressed or argued against.

3.3 Members of Parliament
For the Swedish PoliGraph, we have combined the
speech information with metadata from the MP
category, which includes basic biographical infor-
mation as well as a complete history of their roles
in the parliament. Such roles are usually their time
working as an MP and commission work, but also
longer sick leave is listed here as well as their sub-
stitutes in those cases. In addition to the essen-
tial identifiers “name” and “party”, mappings are
also created to MP’s Wikidata-IDs and their listed
name there, which sometimes provide more detail
than the names as they are stored in RÖD.

The roles of MPs are generally described in
terms of positions, where each assignment (or

Property Description
dok hangar id Internal document ID
dok id Meeting + speech no.
dok titel Protocol title
dok rm Parliamentary year
dok nummer Number of meeting
dok datum Date of speech
avsnittsrubrik Topic title
underrubrik Topic subtitle
kammaraktivitet Type of debate
anforande id Unique speech ID
anforande nummer Speech number in debate
talare Speaker name
parti Speaker party
anforandetext Full speech text
intressent id Speaker’s ID
rel dok id Document being debated
replik Speech type
systemdatum Date of publishing

Table 1: A typical speech document.

leave from that assignment) is stored as a factual
predicate with eight arguments:

1. MP-ID
A unique ID for each MP.

2. Agency code
An identifying code for the agency. This can be
ambiguous, as parties and commissions some-
times use the same identifier.

3. Role
The MP’s role in the agency, e.g. parliamentar-
ian, commission chair or substitute.

4. From
Starting date of the position.

5. To
End date of the position.

6. Type
The type of position, usually either “kam-
maruppdrag” for the parliament or “uppdrag”
for commission work.

7. Uppdrag
The info here varies. For commission work and
other extraparliamentary duties, it contains the
full name of the commission or equivalent. For
extended leave, it lists the name of substitutes.

8. Status
The MP’s presence or absence during the given
period.

53



Figure 1: A semantic graph of Swedish MPs and debates.

3.4 Implementation

For our rendering of these data as a semantic
graph, we chose to create a deductive database
in SWI-Prolog, and combine it with the Pengines
framework in order to offer web access. Prolog’s
modular nature allows for very quick prototyping
and makes it easy to combine existing rules instead
of writing complicated queries such as would be
required with SQL or SPARQL. With Pengines,
web access is offered simultaneously through a
web interface and RPC (Remote Procedure Call)
commands passed directly to the server from any
Prolog client (Lager and Wielemaker, 2014).

Our Prolog database ended up consisting of
a number of files, each mapping identifiers and
properties to each other. In order to make NER as
accurate as possible, we created mappings to MPs’
names both as they are listed in the Swedish par-
liament and how they appear on Wikipedia. This,
of course, includes a mapping between unique
MP IDs in the parliament and their respective
Wikidata-ID, which can potentially be of use for
further integration with other analytical tools. For
MPs, we also created a file listing their party af-
filiation that probably will be a necessary step in
resolving name ambiguity, as well the previously
mentioned position file that details their formal
time in parliament and and activity in various com-
missions. Finally, we have two files that map meet-
ings to dates and debate topics, respectively. An
approximation of the resulting graph can be seen
in figure 1.2 The edges should be read as has or is,
with either MP-ID or the node closest to it as the
subject.

2An approximation in the sense that Prolog predicates can
have any number of arguments. The Speech and Meeting
nodes are for instance mapped to MP-ID and each other in
the same predicate.

4 Usage Details

The Swedish PoliGraph is available to use and
download from https://spraakbanken.
gu.se/poligraph/ under a Creative Com-
mons Attribution licence.3 We ask that this paper
be cited in any published work using the code or
the graph.

4.1 Rule Construction

In contrast to relational database queries, Prolog
queries are largely dependent on rule construc-
tion. For the Swedish PoliGraph, we have created
a small set of specialised rules for the purpose of
disambiguating names and titles that specifically
refer to MPs. A Prolog rule is essentially a list of
predicates that must be true in order to satisfy a
query. These predicates can be either facts or other
rules. Any argument can be substituted with a vari-
able that will, when queried, provide any answer
for which that predicate would be true. To give an
example, a rule stating that a given politician was
an elected and working MP on a given date would
be:
w a s i n r d ( Name , Date ) :−

r i d s n a m e ( Rid , Name ) ,
p o s i t i o n ( Rid , ’ kam ’ , , From , Tom , , , S t a t u s ) ,
Date >= From ,
Date =< Tom ,
S t a t u s \= ’ Ledig ’ .

In somewhat clearer English, this rule states that:
A person with a given Name was an elected and
working MP on a given Date IF there exists a map-
ping from that name to an MP-ID AND that MP-
ID had a position in kam (eng: the parliament) in
that period AND their status in that time was not
Ledig (eng: away).

3https://creativecommons.org/licenses/
by/4.0/
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4.2 Using the Swedish PoliGraph
There are three ways of using the Swedish Poli-
Graph: (1) local querying with SWI-Prolog; (2)
remote querying with SWI-Prolog and Pengines;
and (3) via the web interface. Of these, the latter
will necessarily be more limited in functionality
than the other two, since a practically usable web
interface will not be able to reproduce the flexibil-
ity that Prolog queries provide.

4.2.1 Local Querying
A central feature of Prolog as a programming lan-
guage is its declarative nature. A Prolog program
consists of facts and rules, and are usually inter-
acted with in terms of queries, not unlike relational
databases. For the Swedish PoliGraph, we have
defined a number of predicates that can be queried
directly, although it is also possible for a user to
define new predicates extending or combining the
existent ones.

In order to start using the Swedish PoliGraph lo-
cally, start SWI-Prolog and load the main program
file with [poligraph]. There you will be able
to query both the basic facts and the more complex
rules. Note that for any argument, you can use ei-
ther a quoted string or a number to search for an
exact match, or use an upper-case string for a vari-
able. Some simple examples are as follows:
/∗ ID of any MP wi th l a s t name ’Löfven ’ ∗ /
?− r i d l n a m e ( Rid , ’ Löfven ’ ) .
Rid = 218878014918.

/∗Wikida ta−ID f o r an MP−ID ∗ /
?− r i d w i d (218878014918 , Wid ) .
Wid = ’ Q2740012 ’ .

/∗ P a r t y a f f i l i a t i o n f o r an MP−ID ∗ /
?− r i d p a r t i (218878014918 , P a r t y ) .
P a r t y = ’S ’ .

The main predicate, however, is constructed for
the following purpose: We have a speech, in which
a name is mentioned. In order to resolve the name,
we wish to see who by that name was talking pre-
viously in the same debate. Preferably we know
both the meeting number (dok id) and the topic
(rel dok id). As an example, in a debate on 2016-
12-12 on the topic of communication infrastruc-
ture, MP Teres Lindberg mentioned an Erik Ot-
toson in her speech, which was the 75th speech
in that debate. Querying our program, we get the
MP-ID, party affiliation and speech number(s) for
that person’s earlier participation in the debate:
?− h a d p r e v i o u s a n f ( ’ E r i k Ot toson ’ , Rid , Anf , P a r t y ,

’H401TU1 ’ , ’ H40944 ’ , 75 , ) .
Rid = 832311880029 ,
Anf = 74 ,
P a r t y = ’M’ ;

Rid = 832311880029 ,
Anf = 72 ,
P a r t y = ’M’ ;

In more complex cases, a speaker may not pro-
vide the full name of the person they refer to, but
rather just their last name or a phrase that only
includes their party affiliation. We can then use
the same predicate, retrieving the same informa-
tion plus any additional matches. Where there ex-
ists ambiguity in the results, such as several people
with the same last name or party affiliation, we can
apply simple heuristics, e.g. the last speech before
the current speaker’s, to identify our target.

In a given query, any of the information we pro-
vide can be substituted with a variable, or vice
versa. This means that we can get all speeches
from a given party in a given debate by using vari-
ables for everything except Party and Topic:
?− h a d a n f ( Name , Rid , Anf , ’S ’ , ’H401TU1 ’ , Meet ing ) .
Name = ’ Lindberg ’ ,
Rid = 559925283228 ,
Anf = 73 ,
Meet ing = ’ H40944 ’ ;
Name = ’ Johansson ’ ,
Rid = 691264514114 ,
Anf = 63 ,
Meet ing = ’ H40944 ’ ;

A complete list of currently defined predicates can
be seen in table 2.

4.2.2 Remote Querying with Pengines
By using the Pengines library for SWI-Prolog,
the Swedish PoliGraph can be queried remotely.
This works essentially the same as local query-
ing, except that the query is wrapped in a predicate
pengine rpc/3.4 The predicate takes three ar-
guments: The URL of the Pengines server, the
predicate you wish to run and a list of options,
which must include the name of the application on
the server. Submitting our previous example over
pengine rpc/3 would look like this:
?− p e n g i n e r p c (

’ h t t p s : / / s p r a a k b a n k e n . gu . se / p o l i g r a p h / ’ ,
r i d l n a m e ( Rid , ’ Löfven ’ ) ,
[ a p p l i c a t i o n ( p o l i g r a p h ) ]

) .

Pengines also allows for several other options,
such as specifying which information should be
transferred between the client and the server and
passing user-created predicates to be used in the
query. For details on these options, we refer to
Lager and Wielemaker (2014) and the official
Pengines documentation5.

4The trailing /3 is a Prolog convention to show the arity
of a predicate.

5http://www.swi-prolog.org/pldoc/
package/pengines.html
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Predicate Description
rid sname/2 Maps an MP-ID to that person’s sorting name, e.g. ’Löfven,Stefan’
rid wname/2 Maps an MP-ID to that person’s Wikipedia name, e.g. ’Stefan Löfven’
rid lname/2 Maps an MP-ID to that person’s last name
rid fname/2 Maps an MP-ID to that person’s first name
rid name/2 Maps an MP-ID to any of the names above
rid wid/2 Maps an MP-ID to that person’s Wikidata-ID
rid party/2 Maps an MP-ID to that person’s party affiliation
position/8 See section 3.3 for details
anforande/3 Maps a speech to a meeting number (dok id) and an MP-ID
dokid date/2 Maps a meeting number (dok id) to its date
meet anf topic/3 Maps a topic to a meeting number (dok id) and a speech number
had previous anf/8 Matches previous speeches. See section 4.2.1 for details
had anf/6 Gives speeches with topic, speaker, speech number, party and dok id
had anf/4 Gives the name, ID and party affiliation for all speeches on a given date
was in rd/3 Who was in the parliament in a given period
was mp/3 Who was an elected MP (non-minister) in a given period
was minister/3 Who was a minister in a given period
was ledig/3 Who was on leave from the parliament in a given period
has position/3 A simplification of position/8 – Matches MP’s to their assignments

Table 2: A list of currently defined predicates.

4.2.3 The Web Interface
The web interface is by necessity simplified and
only allows for a few selected queries. As such it
is primarily intended for demonstration purposes,
but it can also be used for qualitative research.

5 Related Work

While argumentation mining is a recent field of
study where little has been done on parliamentary
data (see e.g. Lippi and Torroni, 2016 for a good
overview), semantic networks are almost as old
as computers themselves, starting with a linguistic
application by the Cambridge Language Research
Unit in 1956 (Lehmann and Rodin, 1992). An es-
sential part of the semantic web, there now exist
large-scale semantic graphs on most subjects, the
most comprehensive project being the Wikipedia-
sourced DBpedia (Lehmann et al., 2014). For par-
liamentary data, the situation has improved over
the last few years, and with the increasing im-
plementation of public open data policies we can
expect to see much further work in that domain.
To our knowledge, the largest project for creating
a semantic network from parliamentary data was
Talk of Europe, which resulted in the LinkedEP
Dataset (Hollink et al., 2017), covering all ple-
nary debates held in the European Parliament be-
tween July 1999 and July 2017 (van Aggelen et al.,
2017), as well as biographical information about
the members of parliament sourced from Høyland

et al. (2009). We have also seen this inspire na-
tional efforts such as Talk of Norway (Lapponi
et al., 2018), while several earlier projects are
mentioned by Van Aggelen et al. (2017).

6 Conclusions and Future Work

We have created the Swedish PoliGraph specifi-
cally for named entity resolution and argumenta-
tion mining, and hope that it will prove fruitful to
that end. Our next step will be NER, and while the
current version of the graph is tailored for this, fu-
ture needs may encourage us to augment it with
further metadata, e.g. as additional features to be
used in argumentation mining.

We also hope that this graph can be useful out-
side of our planned scope. The Swedish PoliGraph
is both detailed and flexible enough that it can pur-
posefully serve any project dealing with Swedish
MPs and debates, be it academic, educational or
journalistic.

Acknowledgments

The work presented here has been partly sup-
ported by an infrastructure grant to Språkbanken
Text, University of Gothenburg, for contributing to
building and operating a national e-infrastructure
funded jointly by the Swedish Research Council
(under contract no. 2017-00626) and the partic-
ipating institutions. Thanks also to the reviewers
for their constructive comments.

56



References
Astrid van Aggelen, Laura Hollink, Max Kemman,

Martijn Kleppe, and Henri Beunders. 2017. The
debates of the European parliament as linked open
data. Semantic Web, 8(2):271–281.

Laura Hollink, Astrid van Aggelen, Henri Beunders,
Martijn Kleppe, Max Kemman, and Jacco van Os-
senbruggen. 2017. Talk of Europe – the debates of
the European parliament as linked open data.

Bjørn Høyland, Indraneel Sircar, and Simon Hix.
2009. Forum section: An automated database of
the European parliament. European Union Politics,
10(1):143–152.

Torbjörn Lager and Jan Wielemaker. 2014. Pengines:
Web logic programming made easy. TPLP, 14(4-
5):539–552.

Emanuele Lapponi, Martin G. Søyland, Erik Velldal,

and Stephan Oepen. 2018. The talk of Norway:
a richly annotated corpus of the Norwegian parlia-
ment, 1998–2016. Language Resources and Evalu-
ation, 52(3):873–893.

Fritz Lehmann and Ervin Y Rodin. 1992. Semantic
networks in artificial intelligence, volume 2. Perga-
mon Press, Oxford, UK.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick
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Abstract

Engaging in a live debate requires, among
other things, the ability to effectively rebut ar-
guments claimed by your opponent. In partic-
ular, this requires identifying these arguments.
Here, we suggest doing so by automatically
mining claims from a corpus of news articles
containing billions of sentences, and search-
ing for them in a given speech. This raises the
question of whether such claims indeed corre-
spond to those made in spoken speeches. To
this end, we collected a large dataset of 400
speeches in English discussing 200 controver-
sial topics, mined claims for each topic, and
asked annotators to identify the mined claims
mentioned in each speech. Results show that
in the vast majority of speeches debaters in-
deed make use of such claims. In addition, we
present several baselines for the automatic de-
tection of mined claims in speeches, forming
the basis for future work. All collected data is
freely available for research.

1 Introduction

Project Debater1 is a system designed to engage
in a full live debate with expert human debaters.
One of the major challenges in such a debate is
listening to a several-minute long speech deliv-
ered by your opponent, identifying the main ar-
guments, and rebutting them with effective per-
suasive counter arguments. This work focuses on
the former, namely, automatically identifying ar-
guments mentioned in opponent speeches.

One of the fundamental capabilities developed
in Debater is the automatic mining of claims (Levy
et al., 2014) – general, concise statements that di-
rectly support or contest a given topic – from a
large text corpus. It allows Debater to present
high-quality content supporting its side within its

∗* These authors equally contributed to this work.
1www.research.ibm.com/

artificial-intelligence/project-debater

generated speeches. Our approach utilizes this ca-
pability for a different purpose: claims mined from
the opposing side are searched for in a given op-
ponent speech.

The implicit assumption in this approach is that
mined claims would be often said by human op-
ponents. This is far from trivial, since mined
content from a large text corpus is not guaran-
teed to provide enough coverage over arguments
made by individual human debaters. To assess
this, we collected a large and varied dataset of
recorded speeches discussing controversial topics,
along with an annotation specifying which mined
claims are mentioned in each speech.

Annotation results show our approach obtains
good coverage, thus making the task of claim
matching – automatically identifying given claims
in speeches – interesting in the context of mined
claims. Using the collected data, several claim
matching baselines are examined, forming the ba-
sis for future work in this direction.

The main contributions of this paper are: (i)
a recorded dataset of 400 speeches discussing
200 controversial topics, along with mined claims
for each topic; (ii) an annotation specifying the
claims mentioned in each speech; (iii) baselines
for matching mined claims to speeches. All col-
lected data is freely available for further research2.

2 Related Work

(Mirkin et al., 2018b) recently presented a dataset
similar to the one we collected in the context of
Machine Listening Comprehension (MLC) over
argumentative content. Instead of using mined
claims, they extracted lists of potential arguments
from iDebate3, a manually curated high-quality
database containing arguments for controversial

2https://www.research.ibm.com/haifa/
dept/vst/debating_data.shtml

3https://idebate.org/debatabase
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topics. A major drawback of such an approach
is topic coverage – any topic not included in the
database cannot be handled. Another limitation is
that argument lists from iDebate are short, each
typically contains only 3 or 4 arguments from each
side.

MLC has been recently gaining attention, and
there are several new interesting works and
datasets (Lee et al., 2018b,a; Ünlü et al., 2019).
Other tasks are often phrased as a collection of test
questions, which can be multiple choice (Tseng
et al., 2016; Fang et al., 2016) or require, for exam-
ple, identifying an entity mentioned by the speaker
(Surdeanu et al., 2006; Comas et al., 2010).

Methods for detecting claims in given texts
have been applied to various argumentative do-
mains (e.g. by Palau and Moens (2011); Stab
and Gurevych (2017); Habernal and Gurevych
(2017)). While such tools may be applied to op-
ponent speeches, a major difference in our setting
is that it involves spoken rather than written lan-
guage. Spoken spontaneous speeches often con-
tain disfluencies such as breaks, repetitions, or
other irregularities, and therefore claims detected
in spoken content are likely to contain them as
well. In addition, since the opponent speech audio
is transcribed into text using an Automatic Speech
Recognition (ASR) system, its errors propagate to
detected claims. This is a crucial point for Debater
– since a desired rebuttal in live debates typically
includes a quote of the argument made by the op-
ponent. Thus, any single disfluency or ASR error
in a detected claim prevents its actual use.

3 Data

Motions As in Mirkin et al. (2018b), we man-
ually curated a list of 200 controversial topics -
referred to as motions, as in formal parliamen-
tary proposals. Each motion focuses on a sin-
gle Wikipedia concept, and is phrased similarly to
parliamentary motions, e.g. We should introduce
compulsory voting.

Speeches For each motion we recorded two ar-
gumentative speeches contesting it, as described
in Mirkin et al. (2018b), producing a total of 400
speeches. Our choice of recording speeches con-
testing (rather than supporting) the motion is arbi-
trary, and all methods described henceforth would
work similarly on speeches recorded for the other
side. The dataset format follows the one described
in Mirkin et al. (2018a). Each speech is associated

with a corresponding audio file, an automatic tran-
scription of it4, and a manually-transcribed “refer-
ence” text. Speeches were recorded by 9 expert
debaters. On average, a speech contains 29 sen-
tences and 748 tokens. The average ASR word
error rate, computed by comparing to the manual
transcripts, is 7.07%.

Mining Claims Figure 1 illustrates the sug-
gested mined–claims based rebuttal generation
pipeline. Following is a brief description of the
existing components which perform claim mining.
The rest of this work focuses on the subsequent
component which identifies mentioned claims in
speeches.

Processing starts from a large corpus of news
articles containing billions of sentences. Given
a controversial topic, several queries are ap-
plied, retrieving sentences which potentially con-
tain claims that are relevant to the topic. Query
results are then ranked by a neural-model trained
to detect sentences containing claims (similarly to
Levy et al. (2017, 2018)5). Top-ranked sentences
are passed to a boundary detection component, re-
sponsible for finding the exact span of each claim
within each sentence (Levy et al., 2014). Lastly,
the stance of each claim towards the topic is de-
tected using the method of Bar-Haim et al. (2017).
Used models are tuned towards precision, aimed at
obtaining a set of coherent, grammatically–correct
claims from the opponent side, which can then be
directly quoted in a live debate.

Prior to claim matching, mined claims are fil-
tered, aiming to focus on those with a higher
chance of obtaining a successful match. This in-
cluded removing claims containing: (i) more than
10 tokens, since longer claims are less concise and
may contain more than a single idea; (ii) named
entities (found with Stanford NER (Finkel et al.,
2005)), other than the topic itself, assuming they
are too specific; (iii) unresolved demonstratives,
which may hint to an incoherent sentence or an er-
ror in boundary detection.

The released dataset includes all output from
these components, as well as a complete labeling
indicating which texts are erroneously predicted
to be claims, and what is the correct stance of all
valid claims. The percentage of mined texts which
are both labeled as claims and have a correctly

4See details in Section 5.
5We note that, as opposed to cited work, the corpus used

here is not Wikipedia.
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Figure 1: The suggested architecture for mined–claims based rebuttal generation. System inputs are depicted
with a gray background. The focus of this work is marked on the right: detecting mentioned claims in opponents
speeches. Preceding existing components are shortly described in Section 3. The entire pipeline starts from billions
of sentences, and its final goal is producing few high quality rebuttals opposing the opponent speech.

identified stance is 86%.

Topic coverage Claim mining yielded, on av-
erage, 12.2 claims for each speech, suggesting
match-candidates for 93.5% of the motions in our
data. This shows the potentially high coverage of
using mined claims. In contrast, only 39% of these
motions have candidate iDebate arguments present
in the dataset of Mirkin et al. (2018b).

4 Annotation

Next, we assessed whether mined claims are men-
tioned in recorded speeches through annotation. In
case mined claims do occur in many speeches, the
collected labels would form a dataset which can be
used to develop algorithms for identifying mined
claims in speeches.

In our annotation scheme, each question in-
cluded a speech followed by a list of mined claims,
and we asked to mark those claims which were
mentioned by the speaker. Speeches were given
in both text (manual transcription) and audio for-
mats, to allow for listening, reading, or both. The
length of each claim list was limited to at most 20
claims. Longer lists were split into multiple ques-
tions for the same speech.

Initially the task allowed for two labels: Men-
tioned or Not mentioned, yet error analysis showed
major disagreements on claims alluded to, but not
explicitly stated, in a speech. Example 1 illustrates
this for the claim compulsory voting is undemo-
cratic. Some annotators considered such cases
as mentioned, while others disagreed. Thus, we
modified the task to include three labels (Explicit,
Implicit, Not mentioned), and provided detailed
examples in the guidelines. Example 1 further

shows an explicit mention of the same claim6.

Example 1 (Implicit / explicit mentions)
Claim: Compulsory voting is undemocratic
Implicit ...people have a right to not vote ... that’s
the way that rights work ... if you think that there
is literally any reason a person might not want to
vote ... you should ensure that that person is not
penalized for not voting...

Explicit ...it might be preferable if everyone voted,
but it is undemocratic to force everyone to vote.

Quality control Annotation of each question is
time-consuming, since it requires going over a
whole speech, and a list of claims. Combined with
the amount of questions, we resorted to working
with a crowd-sourcing platform7, to make annota-
tion practical. This required close monitoring and
the removal of unreliable annotators. For qual-
ity control, we placed “test” claims among real
mined claims, either using claims from different
motions, expecting a negative answer, or by using
claims unanimously labeled as mentioned for the
same speech in previous rounds, expecting a pos-
itive label (explicit or implicit). We then defined
thresholds on the accuracy of labeling of these test
claims, and on the agreement of an annotator with
its peers, disqualifying those who did not meet
them. In addition, good annotators were awarded
bonus payments, in order to keep them engaged.
Each question was answered by seven annotators.

Annotation results A claim is considered as
mentioned in a speech when a majority of anno-

6Full annotation guidelines, including more examples, are
provided in the Appendix.

7Figure-Eight: www.figure-eight.com
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tators marked it as either an explicit or an implicit
mention. A mentioned claim is an explicit men-
tion when its explicit answer count is strictly larger
than its implicit answer count. Otherwise, it is an
implicit mention.

Overall, annotation of all 400 speeches and their
mined claims amounted to 4,882 speech–claim
pairs. Of these, 34.7% were annotated as claims
mentioned in the speech. Only 5.6% are explicit
mentions, testifying to the difficulty of the match-
ing task.

On average, there were 4.2 mentioned claims
in every speech. 82.5% of the labels were agreed
on by at least 5 out of the 7 annotators. The
percentage of claims mentioned at least once is
44.8%, and in 87.3% of speeches at least one
claim is mentioned (6.5% of speeches had no
mined claims).

Annotation Quality To estimate inter-annotator
agreement, we focus on annotators with a signif-
icant contribution, selecting those who have an-
swered more than 20 common questions with each
of at least 5 different peers. A per-annotator agree-
ment score is defined by averaging Cohen’s Kappa
(Cohen, 1960) calculated with each peer. The fi-
nal agreement score is the average of all annotators
agreement scores.

Considering two labels (mentioned or not),
agreement was 0.44. Mirkin et al. (2018b) re-
ported a score of 0.5 on a similar annotation
scheme performed by expert annotators. The dif-
ference is potentially due to the use of crowd, and
the larger group of annotators taking part.

Note the applicability of chance-adjusted agree-
ment scores to the crowd has been questioned, in
particular for tasks within the argumentation do-
main (Passonneau and Carpenter, 2014; Habernal
and Gurevych, 2016). Our test claims allow fur-
ther validation of annotation quality, since their
answers are known a-priory. The average anno-
tator error rate on those test claims is low: 7.8%.

5 Evaluation

Annotation confirmed our hypothesis that claims
mined from a corpus are indeed mentioned, or
are at least alluded to, in spontaneous speeches
on controversial topics. On average, of the 12.2
claims mined for each speech, about a third were
annotated as mentioned. We now present several
baselines for identifying those mentioned claims,
using the collected data.

Speech pre–processing An input audio speech
is automatically transcribed into text using IBM
Watson ASR8. The text is then segmented to sen-
tences as in Pahuja et al. (2017).

Next, given a claim, semantically similar sen-
tences are identified. Each sentence is repre-
sented using a 200-dimensional vector constructed
by: removing stopwords; representing remain-
ing words using word2vec (w2v) (Mikolov et al.,
2013) word embeddings learned over Wikipedia;
computing a weighted average of those word
embeddings using tf-idf weights (idf values are
counted when considering each Wikipedia sen-
tence as a document). The claim is represented
similarly, and its semantic similarity to a given
sentence is computed using the cosine similar-
ity between their vector representations. All sen-
tences with low similarity to the claim are ignored
(using a fixed threshold).

Remaining sentences are scored by the har-
monic mean (HM) of three additional seman-
tic similarity measures, and the top-K ranked
sentence are selected (we experiment with K ∈
{1, 3, 5}). These features are:
– Concept Coverage: The fraction of Wikipedia
concepts identified in the claim, found within the
sentence.
– Parse Pairs: The parse trees of the claim and
the sentence are obtained using Stanford parser
(Socher et al., 2013). Then, pairwise edge similar-
ity is defined to be the harmonic mean of the co-
sine similarities computed between the two parent
word embeddings and the two child word embed-
dings. Each edge in the claim parse tree is scored
using its maximal similarity to an edge from the
sentence parse tree. Averaging these scores yields
the final feature score.
– Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007): Cosine similarity computed
between vector representations of the claim and
sentence over the Wikipedia concepts space.

Methods Following sentence selection, three
methods are considered for scoring a speech and
a claim:
HM: Averaging the selected sentences HM scores.
NN: Using a Siamese Network (Bromley et al.,
1993), containing K instances of the same sub-
network: Each pair of a selected sentence and the
claim is embedded with a BiLSTM, followed by

8www.ibm.com/watson/services/
speech-to-text
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an attention layer, a fully connected layer, and fi-
nally a softmax layer which yields a score for the
pair. The network outputs the maximum score of
these K sub-networks.
LR: calculating 23 similarity measures between
each selected sentence and the claim. For each
measure, the average over the K selected sentences
is taken. These averages are used as features for
training a logistic regression classifier. Following
is a brief description of the different groups of sim-
ilarity measures we used.
– w2v-based similarities (5 features): Computing
pairwise word similarities using the cosine simi-
larity of the corresponding word embeddings, and
applying several aggregation options.
– Parse tree similarities (6 features): Computing
the parse tree of the claim and the sentence, and
calculating similarities between different elements
of those trees, similarly to the Parse Pairs feature
described above.
– Part of speech (POS) similarities (5 features):
Identifying tokens with a specific POS tag in the
texts, and computing either the fraction of such to-
kens from one text which appear in the other, or
otherwise aggregating w2v-based cosine similari-
ties between these tokens in several ways.
– Wikipedia concepts similarities (2 features):
The fraction of Wikipedia concepts from the claim
which are present in the sentence, and vice versa.
– Lexical similarities (5 features): n-grams are
extracted from the two texts in various settings
(e.g. with or without lemmatization, or using dif-
ferent values of n). Then, each n-gram from the
claim is scored by its maximal similarity to sen-
tence n-grams (using a w2v-based similarity, with
tf/idf weights). The feature values is the average
of these scores.

Training and test sets The data was randomly
split into a train and test sets, equal in size. Each
contains 100 motions and 200 speeches. The num-
ber of labeled speech-claim pairs is 2,456 in train
and 2,426 in test.

Model selection as well as hyper-parameters
tuning, such as the selection of K, are performed
on train (using cross validation for LR and NN).
Different configuration are ranked according to
their Area Under the ROC Curve (AUC) measure.

Results The AUC score of both LR and NN on
train, for various values of K, was no higher than
0.57. In contrast, all HM configurations achieved

Figure 2: Precision-Recall curves for the top-3 claim
matching configurations (all using HM) on test.

AUC higher than 0.62. We therefore focus on this
method, though it is interesting, in future work,
to improve the supervised methods or understand
why they work somewhat poorly. Figure 2 shows
precision-recall curves for HM and the different
values of K on test. The different plots are compa-
rable, yet there is a slight advantage to K = 1 for
applications valuing precision over recall.

6 Conclusions and Future Work

We addressed the task of identifying arguments
claimed in spoken argumentative content. Our
suggested approach utilized claims mined from a
large text corpora.The collected labeled data show
these claims do cover, in most cases, arguments
made by expert debaters. This confirms this is a
valid approach for solving this task.

Interestingly, most claims are made implic-
itly, suggesting that assertion of claims often in-
volves high lexical variability and expression of
ideas across multiple (not always consecutive)
sentences. This poses a challenge for automatic
claim matching methods, as made evident by the
baselines discussed here.

Successfully identifying arguments made by
opponents forms the basis for an effective rebut-
tal. Our work leaves open the question of how
to construct such rebuttals once a claim has been
matched. This would be an interesting research
direction for future work.
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A Annotation Guidelines

Following are the guidelines used in the annota-
tion of mined claims to recorded speeches.

Overview
In the following task you are given a speech that
contests a controversial topic. You are asked to lis-
ten to the speech and/or read the transcription, then
decide whether a list of potentially related claims
were mentioned by the speaker explicitly, implic-
itly, or not at all.

Steps

• Listen to the speech and/or read the tran-
scription of the speech. Note: some speeches
are transcribed automatically and may con-
tain errors.

• Review the list of possibly relevant claims.
Note: few of the claims might not be full
sentences. Please do your best to “complete”
them to claims in a common-sense manner. If
the claim doesn’t make any sense, select “Not
mentioned”.

• Decide based on the speech only whether the
speaker agrees with each claim, and choose
the appropriate answer:

– Agree - Explicitly
– Agree - Implicitly
– Not Mentioned

Rules & Tips
You should ask yourself whether the statement
“The speaker argued that <claim>” is valid or
not. Note, this statement can be valid even if the
speaker was stating the claim using a somewhat
different phrasing in her/his speech.

Examples

Agree - Explicitly
The claim was mentioned by the speaker, but per-
haps phrased differently.

• If the speaker said: organic food is simply
healthier then she explicitly agrees with the
claim organic food products are better in
health.

• If in a speech about the topic “We should ban
boxing” the speaker said: we think regulation
is simply better in this instance than a ban

then she explicitly agrees with the claim We
should not ban boxing altogether, just reg-
ulate it.

Agree - Implicitly
The claim was not mentioned by the speaker but it
is clearly implied from the speech, and we know
for sure that the speaker agrees with the claim.

The claim will usually be implied in one of the
following ways:

• The claim is a generalization of a claim men-
tioned by the speaker.

If the speaker said: we allow people to make
these decisions even if they might be physi-
cally bad for them then she implicitly agrees
with the claim People should have the right
to choose what to do with their bodies.

• The claim summarizes an argument made by
the speaker.

If the speaker said: It’s essential that some-
thing is done to ensure that people don’t have
dental problems later in life. Water fluorida-
tion is so cheap it’s almost free. There are no
proven side effects, the FDA and comparable
groups in Europe have done lots and lots of
tests and found that water fluoridation is ac-
tually a net health good, that there’s no real
risk to it then she implicitly agrees with the
claim water fluoridation is safe and effec-
tive.

• The claim can be deduced from an argument
made by the speaker.

If the speaker said without the needle ex-
change program people are still going to do
heroin or other kinds of drugs anyway with
dirty or less safe needles. This does lead to
things like HIV getting transmitted, it leads
to other diseases as well, being more likely
to get transmitted then she implicitly agrees
that needle exchange programs could re-
duce the spread of disease.

The text itself must contain some indication of
the implied claim. Don’t choose this option if you
need to make an extra logical step to conclude that
the speaker agrees with the claim. For example,
if the speaker said International aid has problems,
but is still valuable, then you should not conclude
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that she agrees with the claim We should fix in-
ternational aid, and not get rid of it since she
did not argue that the problems should be fixed.
Not Mentioned
The claim is not part of the speech.

For example, if the speaker said and, yes, fem-
inism has its flaws in the status quo ... but it can
be reformed, and the tenets of equality that fem-
inism stands for ... those tenets certainly should
not be abandoned, and feminism has done a fan-
tastic job, both historically and in the modern day,
of championing those tenets. then it can not be in-
ferred that she agrees with the claim We should
try to fix the issues with feminism because peo-
ple support it. Although she suggests to fix the
issues with feminism, she does not claim that peo-
ple support it.
IMPORTANT NOTE: Your answers will be re-
viewed after the job is complete. We trust you to
perform the task thoroughly, while carefully fol-
lowing the guidelines. Once your answers are de-
termined as acceptable per our review, you might
receive a bonus. Note that the bonus is given to
contributors who complete at least 5 pages per job,
and a higher bonus may be given to contributors
who complete at least 50 pages.
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Abstract

Identification of argumentative components is
an important stage of argument mining. Lex-
icon information is reported as one of the
most frequently used features in the argument
mining research. In this paper, we propose
a methodology to integrate lexicon informa-
tion into a neural network model by atten-
tion mechanism. We conduct experiments on
the UKP dataset, which is collected from het-
erogeneous sources and contains several text
types, e.g., microblog, Wikipedia, and news.
We explore lexicons from various application
scenarios such as sentiment analysis and emo-
tion detection. We also compare the experi-
mental results of leveraging different lexicons.

1 Introduction

Argument Mining (AM) is an emerging research
area that has drawn more and more attention since
around 2010. Recently, Project Debater from IBM
has shown such an AI machine supported by ar-
gument mining techniques can do well at argu-
ing. The task of AM can be divided into a few
stages: (1) Extracting argumentative components
from large texts, i.e., boundary detection or seg-
mentation; (2) Classifying the extracted compo-
nents into classes. In general, an argumenta-
tive component can be categorized into ”Claim”,
which usually contains conclusions and stance to-
ward the given topic, or ”Premise”, which con-
tains reasoning or evidence used to support or at-
tack a claim; (3) Predicting the relations between
the identified argumentative components, i.e., sup-
porting and attacking (Cabrio and Villata, 2018).
Some works also consider more complex rela-
tions such as recursively support/attack the rela-
tions themselves rather than merely build relations
between components (Peldszus and Stede, 2013).

Argument detection and classification can im-
prove legal reasoning (Moens et al., 2007), policy

formulation (Florou et al., 2013), and persuasive
writing (Stab and Gurevych, 2014). In this paper,
we focus on mining argumentative components
from a large collection of documents and further
classifying them into roles of support/opposition.
Our model is based on the recurrent neural net-
work (RNN) , which has been widely used in nat-
ural language processing tasks (Cho et al., 2014).
With the help of the attention mechanism (Bah-
danau et al., 2015), RNN can further attend on the
key information.

We propose a novel attention mechanism that
is guided by argumentative lexicon information.
Lexicon information is reported as one kind of the
most frequently used features in argument min-
ing (Cabrio and Villata, 2018). Previous works on
AM have tried to integrate lexical features into the
learning models (Levy et al., 2017; Nguyen and
Litman, 2015; Rinott et al., 2015). These lexi-
cons are mostly composed by human beings or de-
rived by hand-crafted rules, and result in domain-
specificity. That is, it may fail to be used for other
domains. In the contrast of scarcity of general
lexicon for AM, lexical resources are abundant in
other fields like sentiment analysis, opinion min-
ing, and emotion detection (Hu and Liu, 2004;
Mohammad and Turney, 2013; Kiritchenko and
Mohammad, 2016). As a more general domain,
AM may get the benefits of not only in-domain
lexicon, but also out-domain lexicons.

The contribution of this work is two-fold: (1)
We propose an attention mechanism to leverage
lexicon information. (2) In the face of the scarcity
of argument lexicon, we explore several differ-
ent types of lexicons to verify whether outside re-
sources are useful for AM tasks.

The rest of this paper is organized as follows.
Section 2 summarizes related works about AM.
The dataset and linguistic resources used for ex-
periments are shown in Section 3. We introduce
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our model in Section 4 and show the experimen-
tal results in Section 5. We also look into the er-
rors made by our best model in Section 6. Sec-
tion 7 makes a discussion on experimental results
and concludes this work.

2 Related Works

Neural networks have been used in varieties of
AM tasks. To improve the vanilla LSTM model,
Stab et al. (2018a) use attention mechanism to fuse
topic and sentence information together. In the
work of Laha and Raykar (2016), they present sev-
eral bi-sequence classification models on different
datasets. However, rather than using some sophis-
ticated architecture such as attention, it considers
only different concatenation or condition method
on the output of LSTM. Eger et al. (2017) propose
an end-to-end training model to mining argument
structure, identifying argument components.

Besides syntactic and positional information,
lexical information is also reported as one of
the most used features in argument mining task
(Cabrio and Villata, 2018). In some similar re-
search fields such as sentiment analysis and emo-
tion mining, a number of works have been pro-
posed to combine lexical information with the NN
models. Teng et al. (2016) use lexical scores as the
weights and do the weighted sum over the outputs
of the LSTM model, in order to derive the sen-
tence scores. Zou et al. (2018) determines atten-
tion weights using lexicon labels, which lead the
model to focus on the lexicon words. Bar-Haim
et al. (2017) proposes an idea of expanding lexi-
cons to improve stance classifying task.

However, in AM, seldom works directly com-
bine lexicon with models. By using discourse fea-
ture, Levy et al. (2018) generates weak labels and
use weak supervision. Shnarch et al. (2018) also
present a methodology to blend such weak labeled
data with high quality but scarce labeled data for
AM. Al-Khatib et al. (2016) consider the distant
supervision method. Most of these works use the
end-to-end training paradigm with the outside re-
sources only for generating the weak label, which
may not fully leverage the information of the lexi-
cons.

3 Resources

In this section, we introduce the dataset used to
evaluate the performance of our proposed model.
Besides, we describe each lexicon in brief and

show how to perform the data preprocessing.

3.1 Data

We conduct the experiments on the dataset re-
leased by Stab et al. (2018b).1 The dataset in-
cludes 25,492 sentences over eight topics that are
randomly selected from an online list of controver-
sial topics.2 The selected topics, which are con-
sidered as queries, are used to retrieve documents
from heterogeneous sources via the Google search
engine. Among these sentences, 4,944 of them
are supporting arguments, 6,195 are opposing ar-
guments, and 14,353 are non-argument sentences.
This dataset is commonly used for sentential argu-
ment identification task. Levy et al. (2018) col-
lect a dataset with around 1.5 million sentences
over 150 topics from Wikipedia. However, only
2,500 of them are labeled. It may not be sufficient
for training a model, especially for neural network
models.

The definition of argumentative components
differs from dataset to dataset. In the dataset used
in this work, an argumentative component is a
span of text with reasoning or evidence, which is
able to either support or oppose a topic (Stab et al.,
2018b).

3.2 Lexicon resource

To improve the baseline model, we consider sev-
eral existing lexicons across different domains.
We first explore the claim lexicon that is built for
argument mining task (Levy et al., 2017). We also
include the lexicon resources often used in senti-
ment analysis (Hu and Liu, 2004) and emotion de-
tection (Mohammad and Turney, 2013). We pos-
tulate that the resources for these application sce-
narios may have the potential for argument min-
ing. We further develop a model based on the gen-
eral purpose lexicon, WordNet (Miller, 1995).

These resources are applied in different ways.
We use the claim lexicon (Levy et al., 2017), the
sentiment lexicon (Hu and Liu, 2004), and the
emotion lexicon (Mohammad and Turney, 2013)
to extract critical words from the i-th input sen-
tence Ci, forming a sentence Ai. In contrast,
we consult WordNet (Miller, 1995) to expand the
short topic Ti into the corresponding Ai.

1https://www.informatik.tu-darmstadt.
de/ukp/research_6/data

2https://www.procon.org/, https://www.
questia.com/library/controversial-topics
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Claim Lexicon. The claim lexicon is a lexicon
containing words with argumentative characteris-
tics. Levy et al. (2017) use the appearance of the
term ”that” as a weak signal of sentences contain-
ing argumentative components. After collecting
nearly 1.86M sentences, they compute the prior
probability of the term ”that” P (that) occurring
in a sentence, and the probabilities P (that|wi),
where P (that|wi) denotes the probability of a
sentence having the term ”that” and the word wi

is in the suffix after the main concept (i.e. the tar-
get entity in a controversial topic), given the sen-
tence containing wi. Those words with a proba-
bility P (that|wi) > P (that) are included in their
proposed claim lexicon, resulting a lexicon with
around 600 claim words. The lexicon was then
used for designing sentence pattern rules called
claim sentence query (CSQ). They believe the
claim lexicon can help detect sentences containing
argument.

Sentiment Lexicon. Hu and Liu (2004) built
a sentiment lexicon that contains around 6,800
words. Each word is labeled as negative and/or
positive. We construct an additional sentenceA by
extracting the words that are in both sentiment lex-
icon and the input sentence C, regardless whether
they are positive or negative.

Emotion Lexicon. The emotion lexicon
built by Mohammad and Turney (2013) contains
around 14,200 words. Each word in the lexicon
is given eight emotion labels. An emotion in the
lexicon could be one of eight emotions, including
anger, anticipation, disgust, fear, joy, sadness, sur-
prise, and trust. The labels are defined as follows:

label(wi, ej) =

{
1, if wi associated with ej
0, otherwise

Wherewi is a word, and ej is one of the eight emo-
tions. In the experiment, we select the words that
have at least one emotion labeled as 1, resulting a
list of 6,468 words. We then use this list to create
an additional sentence A from the input sentence
C.

WordNet. To expand a topic T composed of
words wT1 , w

T
2 , ..., w

T
K , we expand each of the

words in it. For each word wTi , we use WordNet
(Miller, 1995) to find its corresponding synonyms.
We then put the found synonyms together, forming
an additional sentence A, an expanded version of
topic T .

Word Embedding
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Figure 1: The architecture of Lexicon Guided Attentive
Neural Network Model

4 Model

This section describes the development of the
baseline model and the proposed model. To iden-
tify sentence-level argumentative components, the
model is given a sentence C, which contains a se-
quence of wordswc

1, w
c
2, ..., w

c
N and a topic T with

words wT1 , w
T
2 , ..., w

T
K . The input word sequence

is then encoded as a sequence of word embeddings
via the GloVe word vectors. The pre-trained word
vectors with the dimension of 100 released by Pen-
nington et al. (2014) are used. Based on the given
input, the model makes a prediction ŷ for the given
sentence, i.e., classifying it as supporting argu-
ment, opposing argument, or non-argument. For
comparison, we implement a baseline model with
the vanilla bidirectional LSTM (BiLSTM).

In order to exploit the linguistic knowledge,
Lei et al. (2018) highlight the sentiment words of
the input sentence, computing attention weight for
each word with them. By integrating the senti-
ment lexicon into the neural network model, the
work successfully improves the performance in
sentiment analysis. This work proposes a model
that integrates an outside lexicon resource into at-
tention mechanism (Vaswani et al., 2017). For
each input sentence, we compose an additional
sentenceA, which contains words wa

1 , w
a
2 , ..., w

a
M

based on the given lexicon. The additional sen-
tence A is then forwarded to the embedding layer
together with input sentence C. The output of
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model F1 Parg+ Parg− Rarg+ Rarg−
BiLSTM .5337± .0123 .4521± .0391 .4832± .0393 .2911± .1139 .4816± .1276
ClaimLex∗ .5684± .0222 .4736± .0322 .5075± .0450 .3756± .1072 .5011± .0854
SentimentLex∗ .5718± .0165 .4937± .0365 .5125± .0414 .3590± .1043 .5240± .0889
EmotionLex∗ .5695± .0129 .4920± .0369 .5036± .0356 .3524± .0861 .5264± .1006
WordNet∗ .5788± .0142 .4846± .0292 .5191± .0376 .3724± .0818 .5235± .0772

Table 1: The results of the baseline model and the proposed model with different lexicon resources. The highest
score of each column is highlighted in bold font.

embedding layer is the sequences ec1, e
c
2, ..., e

c
N

and ea1, e
a
2, ..., e

a
M , representing the embedded sen-

tences C and A, respectively. Then, eci is fed into
BiLSTM and results in hci at the corresponding
time step. As for A, we add an RNN to collect its
information and take the output haM at the last time
step as its representation. Though Lei et al. (2018)
use an LSTM to encode the sentimental sentences,
we do not follow their approach. In our work, the
simple RNN outperforms the LSTM in the prelim-
inary experiments.

The attention weight of the i-th word (i.e. αi)
is determined by the concatenation of the output
of the BiLSTM hci and the output of the RNN (i.e.
haM ), which is given the additional sentence A as
the input:

αi =
exp(σ([hci ;h

a
M ]))

∑N
i=1 exp(σ([h

c
i ;h

a
M ]))

(1)

where αi indicates the attention weight of i-th
word of the input sentence, and [hci ;h

a
M ] indicates

the concatenation of i-th hidden state and the RNN
output state. The scoring function σ(·) is designed
as:

σ([hci ;h
a
M ]) = tanh(Wc[h

c
i ;h

a
M ]) (2)

where Wc indicates trainable parameters.
All the weighted hidden states are then summed

up, and connected to a fully connected layer for
the final prediction:

o =

N∑

i=1

hci
′

(3)

hci
′
= αih

c
i (4)

Figure 1 illustrates the architecture of our model.

5 Experiments

Because most of the lengths of input sentences are
less than 60 and most of the lengths of additional

sentencesA are less than 20, we truncate them into
lengths of 60 and 20 respectively. The dataset has
25,492 sentences in total. We conduct 5-fold cross
validation for evaluating our model.

To evaluate our approaches, we report the
average macro F1 as ternary setting, precision
and recall of predicting supporting arguments
(Parg+, Rarg+), and precision and recall of pre-
dicting opposing arguments (Parg−, Rarg−). We
run paired t-test for each proposed model in com-
parison with the baseline model, and mark the
models having statistical significance (i.e. p-value
< 0.05) with a wildcard. As the result shown in
Table 1, we can observe that the proposed mod-
els benefit from the information from the adopted
lexicons, improving the performance of argumen-
tative components identification. The best model,
which uses WordNet to expand topic T , outper-
forms the baseline model by 4.5 percentage in F1.
The proposed model with the lowest F1 score (i.e.
ClaimLex) still outperforms the baseline by 3.4
percentage. Furthermore, the best performance re-
ported by Stab et al. (2018b) on the same dataset
is 0.4285 in macro F1, which is the result of only
incorporating topic information into their models.
This shows the impact of the lexicon information.

However, we can also observe that the result
of integrating claim lexicon (Levy et al., 2017)
is out of our expectation though it is a resource
for argument mining. Possible reasons are fig-
ured out as follows. Firstly, the lexicon is built
based on a strong assumption, i.e., the present of
the term ”that” indicates a high probability of the
occurrence of argumentative components. Sec-
ondly, the lexicon has only 586 words, indicating
a very small coverage with the whole vocabulary.
Thirdly, the lexicon built from the sentences across
100 different topics contains a number of domain-
specific words such as ”LGBTQ” and ”militarily”.
Highlighting of these domain-specific words may
cause noise when the topic is unrelated to them.
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Topic Sentence Prediction Annotation

S1
death
penalty

Advocates of death penalty cite examples on how
imposing the death sentence or abolishing it have af-
fected crime rate.

attack support

S2
death
penalty

Pain of Death: Executing a person can be quick
and painless, or executing a person can be slow and
painful.

support non-arg

S3
gun
control

If you can get to the phone to call 911, if you are
strong enough to hold off your attacker until the po-
lice arrive, and if you can wait 15 minutes in the city
or 45 minutes in the country for law enforcement to
arrive while you struggle with the intruder, then you
might make it.

support attack

S4 cloning
Our of respect for human clones (human beings in
every respect), a ban on human cloning should be
opposed.

support attack

S5
gun
control

We should have more of it! non-arg support

Table 2: The examples that our best model fails to correctly predict. The sentences predicted/annotated as non-
argumentative ones are abbreviated to non-arg.

6 Error Analysis

To know better what kind of sentence would mis-
lead our model to make wrong predictions, we ran-
domly sample the sentences with error from our
best model, i.e., lexicon-guided attentive neural
network model with WordNet. After looking into
these errors, we find that the causes of a wrong
prediction can be briefly categorized into the fol-
lowing cases. Some illustrations of the errors are
listed in Table 2: (1) The sentences that have am-
biguous words or state an open question can eas-
ily lead our model to predict the sentences’ labels
from non-argumentative to argumentative, or pre-
dict the labels from one stance, i.e., supporting or
attacking, to the other. For example, both ”impos-
ing” and ”abolishing” are shown in S1, which may
cause the model to fails on correctly detecting the
stances. S2 states an open question on the influ-
ence of death penalty, but the model mistakes it
for an argumentative sentence; (2) When arguing
over an issue, people may use irony to attack the
opposite stance. Such statement may mislead the
model, as S3 has shown; (3) We also find that our
model may predict wrongly with the appearance of
double negation. The part of the sentence S4, ”a
ban on human cloning should be opposed”, con-
veys the supporting stance with a double negative
statement. With a limited amount of training data,
the model may not be able to comprehend rela-

tively complicated syntax.
On the other hand, some examples in the dataset

may have been wrongly annotated. According to
Stab et al. (2018b), arguments are defined as a
span of text having reasoning or evidence that can
be used to support or oppose a topic. S5 does ex-
plicitly declare its supporting stance, but neverthe-
less has no reasoning or evidence.

7 Conclusion

In this work, we propose a novel approach to lever-
age the lexicon from both in-domain and out-of-
domain sources for the task of argumentative com-
ponent mining. We explore several sources from
different application scenarios, from claim lexicon
(Levy et al., 2017) to other domain resources such
as sentiment analysis (Hu and Liu, 2004), emo-
tion detection (Mohammad and Turney, 2013),
and the general domain lexicon resource (Miller,
1995). Experimental results confirm the effective-
ness of the integration of lexicon information. The
scarcity of the resources in argument mining is
also highlighted in the discussion.
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Abstract
Attention mechanisms have seen some success
for natural language processing downstream
tasks in recent years and generated new state-
of-the-art results. A thorough evaluation of
the attention mechanism for the task of Argu-
mentation Mining is missing. With this paper,
we report a comparative evaluation of atten-
tion layers in combination with a bidirectional
long short-term memory network, which is the
current state-of-the-art approach for the unit
segmentation task. We also compare sentence-
level contextualized word embeddings to pre-
generated ones. Our findings suggest that for
this task, the additional attention layer does
not improve the performance. In most cases,
contextualized embeddings do also not show
an improvement on the score achieved by pre-
defined embeddings.

1 Introduction

Argumentation Mining (AM) is increasingly ap-
plied in different fields of research like fake-news
detection (Cabrio and Villata, 2018) and politi-
cal argumentation and network analysis (Haunss
et al.).
One crucial part of the AM pipeline is to seg-
ment written text into argumentative and non-
argumentative units. Recent research in the area of
unit segmentation (Eger et al., 2017; Ajjour et al.,
2017) has lead to promising results with F1-scores
of up to 0.90 for in-domain segmentation (Eger
et al., 2017). Nevertheless, there is still a need for
more robust approaches.
Given the recent progress of attention-based mod-
els in Neural Machine Translation (NMT) (Bah-
danau et al., 2014; Vaswani et al., 2017), this pa-
per evaluates the effectiveness of seperate atten-
tion layers for the task of argumentative unit seg-
mentation. The idea of the attention layers added

∗The first two authors contributed equally. Their listing
order is random.

to the recurrent networks is to preprocess the input
data and enable the model to prioritize those parts
of the input sequence that are important for the
current prediction (Bahdanau et al., 2014). This
can be achieved by learning additional parameters
during the training of the model. With the addi-
tional information gained, the model learns a bet-
ter internal representation which improves perfor-
mance.
Additionally, we evaluate the impact of contex-
tualized distributed term representations (also re-
ferred to as word embeddings hereinafter) on all
our models. The goal of word embeddings is to
represent a word as a high-dimensional vector that
encodes its approximate meaning. This vector will
be generated by a model trained on a language
modeling task, like next-word prediction (Mikolov
et al., 2013), for a given text corpus. The repre-
sentation is based on the word’s surrounding con-
text in the corpus. Words with a similar semantic
meaning should then also have similar vector rep-
resentations, as measured by their distance in the
vector space (Sahlgren, 2005, 2006; Firth, 1957;
Heuer, 2015). Different methods to pre-compute
the embeddings include word2vec (Mikolov et al.,
2013), FastText (Bojanowski et al., 2017) and
GloVe (Pennington et al., 2014). To make use of
the capabilities of pre-trained Language Models
(LMs), such as BERT (Devlin et al., 2018) or Flair
(Akbik et al., 2018), we evaluate how well their
semantic representations perform, by using con-
textualized word embeddings. Those are, in con-
trast to previously mentioned methods, specific to
the context of the word in the input sequence. One
major benefit is the fact that the time-consuming
feature engineering could become obsolete since
the features are implicitly encoded in the word em-
beddings. Furthermore, a better semantic repre-
sentation of the input could lead to better general-
ization capabilities of the model and, therefore, to
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better cross-domain performance.
This paper answers the following research ques-
tions, which will help to assess the importance of
the attention layers and contextualized word em-
beddings for the argument unit segmentation task:

• RQ1: To what extent can seperate attention
layers help the model focus on the, for the
task of unit segmentation relevant, sequence
parts and how much do they influence the
predictions?

• RQ2: What is the impact of contextualized
distributed term representations like BERT
(Devlin et al., 2018) and Flair (Akbik et al.,
2018) on the task of unit segmentation and
do they improve upon pre-defined represen-
tations like GloVe?

The contributions of this paper are as follows:
first, we present and evaluate new attention-based
architectures for the task of argumentative text
segmentation. Second, we review the effective-
ness of recently proposed contextualized word em-
bedding approaches in regard to AM. We will con-
tinue by presenting the previous work on this spe-
cific task, followed by a description of the different
architectures used, the data set and the generation
of the word embeddings. Afterwards, we will re-
port the results, followed by a discussion and the
limitations. We will finish with a conclusion and
an outlook on possible future work.

2 Related Work

Attention mechanisms have long been utilized in
deep neural networks. Some of its roots are in
the salient region detection for the processing of
images (Itti et al., 1998), which takes inspiration
from human perception. The main idea is to focus
the attention of the underlying network on points-
of-interest in the input that are often surrounded
by irrelevant parts (Mnih et al., 2014). This al-
lows the model to put more weight on the impor-
tant chunks. While earlier salient detectors were
task-specific, newer approaches (e.g. Mnih et al.,
2014) can be adapted to different tasks, like image
description generation (Xu et al., 2015), and allow
for the parameters of the attention to be tuned dur-
ing the training. These additional tasks include se-
quence processing and the application of such net-
works to different areas of Natural Language Pro-
cessing (NLP). One of the first use-cases for atten-
tion mechanisms in the field of NLP was machine

translation. Bahdanau et al. (2014) utilized the
attention to improve their NMT model. Vaswani
et al. (2017) achieved new State-of-the-Art (sota)
results by presenting an encoder-decoder architec-
ture that is based on the attention mechanism, only
adding a position-wise feed-forward network and
normalizations in between. Devlin et al. (2018)
picked up on the encoder part of this architecture
to pre-train a bidirectional LM. After fine-tuning,
they achieved a new sota performance on different
downstream NLP tasks like part-of-speech tagging
and questions-answering.
A possible way of posing the unit segmentation
as NLP task is a token-based sequence labeling
(Stab, 2017). While Tobias et al. (2018) used non-
recurrent classifiers to approach this problem, oth-
ers mostly applied recurrent networks to the task
of unit boundary prediction. For example, Eger
et al. (2017) reported different long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) architectures. Further, Ajjour et al. (2017)
proposed a setup with three bidirectional LSTMs
(Bi-LSTMs) (Schuster and Paliwal, 1997) in total
as their best solution. While the first two of them
are fully connected and work on word embeddings
and task-specific features respectively, the inten-
tion for the third is to take the output of the first
two as input and learn to correct their errors. Even
though the third Bi-LSTM did not improve on the
F1-score metric, it did succeed in resolving some
of the wrong consecutive token predictions, with-
out worsening the final results.
To the best of the authors’ knowledge, the atten-
tion mechanism has not been widely utilized for
the task of argumentative unit segmentation. Stab
et al. (2018) integrated the attention mechanism
directly into their Bi-LSTM by calculating it at
each time step t to evaluate the importance of the
current hidden state ht. To do that, they employed
additive attention. A similar approach has been
applied by Morio and Fujita (2018) for a three-
label classification task (claim, premise or non-
argumentative).
While a direct integration of the attention mech-
anism is able to take the previous state of the
Bi-LSTM into the calculation, it seems less trivial
to implement with the current available program-
ming frameworks. In contrast, the approach pre-
sented in this paper uses attention as a separate
layer that encodes all sequences before they are
fed into a Bi-LSTM. This might enable the recur-
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rent parts of the network to learn from better rep-
resentations that are specific to the task they were
trained on. The aim is further to evaluate the pos-
sible applications of attention layers for the task of
sequence segmentation and token classification. A
recurrent architecture (Ajjour et al., 2017) is com-
pared to multiple modified versions that utilize the
aforementioned attention mechanism.
In order to derive a representation of the input
text that better resembles the context of the in-
put for a specific task, several approaches have
been presented. Akbik et al. (2018), for exam-
ple, pre-train a character-level Bi-LSTM to pre-
dict the next character for a given text corpus.
The pre-trained model is able to derive contextu-
alized word embeddings by additionally utilizing
the input sequence for a specific task. This allows
the system to encode the preceding and following
words of the given input sequence into the word
representation. In comparison to that, the pre-
trained BERT-LM utilizes stacked attention lay-
ers (Vaswani et al., 2017). By feeding a sequence
into it and extracting the output of the last layer for
each token, the idea is to implicitly use the atten-
tion mechanism to derive a better representation
for every token. As is the case for the character-
wise LM from Akbik et al. (2018), the BERT em-
beddings are contextualized by the whole input se-
quence of the specific task.
This paper will compare the two contextualized
approaches described above with the pre-defined
GloVe (Pennington et al., 2014) embeddings in the
light of their usefulness for AM. The goal is to en-
code the features necessary to detect arguments by
utilizing the context of a sentence.

3 Methodology

This paper evaluates different machine learning
architectures with attention layers for the task of
AM, and more specifically unit segmentation. The
problem is framed as a multi-class token labeling
task, in which each token is assigned one of three
labels. A (B) label denotes that the token is at the
beginning of an argumentative unit, an (I) label
that it lies inside a unit and an (O) label that the
token is not part of a unit. This framework has
been applied previously for the same task (Stab,
2017; Eger et al., 2017; Ajjour et al., 2017).
The architectures proposed in this section build
on Ajjour et al. (2017), omitting the second
Bi-LSTM, which was used to process features

other than word embeddings (see section 3.3).
They are further being modified by adding atten-
tion layers at different positions. The goal is to
reuse existing approaches and possibly enhance
their ability to model long-range dependencies.
Additionally, a simpler architecture, consisting of
a single Bi-LSTM paired with an attention layer, is
built and evaluated with the aim of reduced com-
plexity.
In order to answer the second research question,
this paper reports results in combination with im-
proved input embeddings, in order to evaluate
their effectiveness and impact on the AM down-
stream task.
All models are compared to the modified re-
implementation of the architecture, which is de-
fined as the baseline architecture.

3.1 Models

In order to evaluate the attention mechanisms, dif-
ferent architectures based on previous AM litera-
ture are implemented. The attention layer is added
at different positions in the network.
All models were implemented using Python and
the Keras framework with a TensorFlow back-
end. For the self-attention and multi-head atten-
tion layers, an existing implementation is used
(HG, 2018a,b). The difference between the two
is that the multi-head attention divides the in-
put into multiple chunks and each head therefore
works on a different vector subspace (Vaswani
et al., 2017), while the self-attention works on the
whole input sequence. This is supposed to allow
the head to focus on specific features of the in-
put. In this case, the self-attention layers use addi-
tive attention, while the multi-head attention lay-
ers use scaled dot-product attention, with the lat-
ter following the implementation of Vaswani et al.
(2017).

Baseline re-implementation The baseline
model from Ajjour et al. (2017) uses a total of
three Bi-LSTMs (two of them fully connected)
to assign labels to tokens (see Figure 1a). The
re-implementation does not include the two fully
connected Bi-LSTMs but instead uses only a
single one that works on the word embeddings
(see Figure 1b). Due to the fact that the second
Bi-LSTM in the first layer is only used to encode
the non-semantic features like part-of-speech
tags and discourse marker labels, it is omitted in
the re-implementation. Hereafter, we will refer
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Figure 1: (a) The original baseline architecture as reported by Ajjour et al. (2017). (b) The modified baseline
architecture without the second input Bi-LSTM. The bold arrows show the positions at which the additional atten-
tion layers are added to build the Baseline+input and Baseline+error architectures. (c) The Bi-LSTM architecture
incorporates only one Bi-LSTM. The bold arrow shows the position at which the additional attention layer is added
to build the Bi-LSTM+input architecture.

to this model as Baseline. Also, the batch size
was increased from 8 to 64, compared to the
original implementation, as a trade-off between
convergence time and the model’s generalization
performance (Keskar et al., 2016). Nevertheless,
this model achieves comparable scores to the
ones presented in the original paper. The slightly
lower performance can probably be attributed to
implementation details.

Baseline+input and Baseline+error For both
variations, the architecture shown in in Figure 1b
was used as a basis. Multi-head-attention layers
are added at different positions in the network.
The number of attention heads depends on the di-
mension of the embedding vectors. For the GloVe
(300 dimensions) and the BERT (3072 dimen-
sions) embeddings, six heads are used, while the
Flair (4196 dimensions) embeddings require four
heads. Both numbers were the largest divisor for
the respective input vector size that worked inside
the computational boundaries available. In the first
model, an attention layer was added before the first
Bi-LSTM in an attempt to apply a relevance score
directly to the tokens, in order to better capture
dependencies of the input sequence. This model
will be referred to as Baseline+input. The second
variation adds the attention layer after the first and
before the second Bi-LSTM, which will be called
Baseline+error. According to Ajjour et al. (2017),
the latter Bi-LSTM is used to correct the errors of
the first one. The attention layer should be able
to support the model in the error correction pro-
cess. In contrast to the first approach, this does

not change the input data, but only works on the
output of the first Bi-LSTM.

Bi-LSTM and Bi-LSTM+input To decrease the
complexity of the architecture, two additional
models with a single Bi-LSTM are trained. The
first variant has no attention layer, while the sec-
ond one utilized the same input attention de-
scribed above (see Figure 1c). They will be
refered to as Bi-LSTM and Bi-LSTM+input re-
spectively. Both architectures use a self-attention
mechanism instead of the above-mentioned multi-
head-attention, due to better results in preliminary
tests.

3.2 Data

The different architectures were trained and eval-
uated on the “Argument annotated Essays (version
2)” corpus (also referred to as Persuasive Essays
corpus) (Stab and Gurevych, 2017). It was utilized
for the same task in previous literature (Ajjour
et al., 2017; Eger et al., 2017).
The corpus, compiled for parsing argumentative
structures in written text, consists of a random
sample of 402 student essays. The annotation
scheme includes the argumentative units and the
relations between them, as well as the major claim
and stance of the author towards a specific topic.
The texts were annotated by non-professionals, la-
beling the boundary of each argumentative unit
alongside the unit type. A type can either be
major-claim, claim or premise. For the unit seg-
mentation task, the corpus is labeled by treating
major claims, claims, and premises as argumen-
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tative units1. For comparability reasons in the
evaluation process, the models are trained and
tested with the train-test-split defined by Stab and
Gurevych (2017). The development set was com-
posed of the last 20 percent of the training set and
shuffled before use.

3.3 Features

For each token, a set of three different embed-
dings is generated and compared regarding their
capability as standalone input features. The re-
sulting weighted F1-score is then used as a proxy
for measuring the usefulness of the generated text-
representation in light of this specific downstream
task.
In combination with the re-implemented architec-
ture, the word embeddings approach GloVe (Pen-
nington et al., 2014), trained on 6 billion tokens,
serves as the baseline.
As a first approach to enhance the performance,
the GloVe embeddings are stacked with the
character-based Flair embeddings (Akbik et al.,
2018), which are generated by a Bi-LSTM model.
Akbik et al. (2018) argue that the resulting embed-
dings are contextualized, since the LM was trained
to predict the most probable next character and
therefore to encode the context of the whole se-
quence.
Similar to that, we also compare contextualized
BERT-embeddings as standalone features (Devlin
et al., 2018). An increased performance is ex-
pected because of the pre-training procedure of the
LM. The BERT-LM was trained to predict a (ran-
domly masked) word by utilizing the context of its
appearance, as well as on next sentence prediction.
Due to its sota performance for both, token-level
and sentence-level tasks, the authors of this pa-
per argue that the derived representations are well
suited for the task of unit segmentation. Also, the
representation fits the needs of the inter-token and
sentence dependencies of the task. It is expected
that this enables the model to better grasp the no-
tion or pattern of an argument. Both contextual-
ized embeddings are generated using the Flair li-
brary (Zalando Research, 2018).
For the of the BERT-embeddings the “bert-base-
uncased” LM, consisting of 12-layers and pre-
trained on lowercased data, is used. At the time

1All data pre-processing scripts are available
in our code repository: https://gitlab.
informatik.uni-bremen.de/covis1819/
worth-the-attention.

Model GloVe BERT Flair
Baseline 0.86 0.83 0.87

Baseline+input 0.85 0.68 0.67
Baseline+error 0.67 0.68 0.67

Bi-LSTM 0.86 0.86 0.86
Bi-LSTM+input 0.84 0.83 0.81

Table 1: The weighted F1-scores for the Baseline and
all four variations. Results are shown per variation
and embedding. Each row shows the performance of
one architecture with different word embeddings as in-
put vector. The highest score for each architecture is
marked in bold.

of writing, the Flair library extracts the representa-
tions for the first subword token from the last four
layers of the pre-trained BERT model. The subto-
ken embeddings is then used as representation for
the whole token. Features specifically engineered
for this task are not included in the input, follow-
ing the argumentation of Eger et al. (2017) that
they will probably not be generalizable to differ-
ent data sets.

4 Results

We evaluate the performance of all architectures
on the Persuasive Essays data set detailed above.
The models are re-initialized after every evalua-
tion and do not share any weights. This allows
us to answer the first research question of whether
additional attention layers have a positive impact
on the prediction quality.
To answer the second research question, we re-run
each training, replacing the GloVe embeddings
with BERT and Flair embeddings. Both contex-
tualized embedding methods are tested separately.
We contextualize the tokens on the sentence level
since the BERT model (Devlin et al., 2018) only
allows for a maximum input length of 512 char-
acters. This makes document-level or paragraph-
level embeddings impractical for the data set.
As a performance measure, we report the weighted
F1-score instead of the macro F1-score, since it
takes the imbalance of the samples per label into
account.
For our re-implementation of the baseline, we are
able to approximately reproduce the results re-
ported by Ajjour et al. (2017). Additionally, we
can verify that there is no major change in the
performance when adding a second Bi-LSTM to
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the network (compare results for Bi-LSTM and
Baseline in Table 1).

4.1 Attention Layers

The results of the token classification task are pre-
sented in Table 1. Generally speaking, the added
attention encodings do not improve upon the origi-
nal architecture’s performance, no matter at which
position they are added. Architectures with an
input attention encoding, namely Baseline+input

and Bi-LSTM+input, do achieve similar perfor-
mances compared to their respective baseline. But
the F1-score performance is in strong contrast to
the generalization error, which is in most cases
lower for the Baseline model.
The Baseline+error architecture, on the other
hand, which is supposed to help the second
Bi-LSTM in the network to correct the errors made
by the first one, performs worse across all tests.
For the Flair embeddings, this results in a 0.20
points performance drop in the F1-score measure.

4.2 Contextualized Word Embeddings

The results for the enhanced word embedding
evaluations are reported in Table 1. In some cases,
the models utilizing the word embeddings gen-
erated by the BERT-LM achieve a lower perfor-
mance score than the other embeddings. This drop
is most noticeable for the Baseline+input model,
while the performance for the Bi-LSTM+input de-
creases only slightly. The Baseline+error model is
able to achieve results that outperform both, GloVe
and Flair embeddings.
Compared to the GloVe vectors, the models
trained on the Flair embeddings mostly lose in
F1-score performance as well. For example, the
Baseline+input model drops by 0.18. On the other
hand, the Baseline model is able to slightly im-
prove upon the GloVe score using the Flair em-
beddings, achieving a final score of 0.87, which
also marks the best overall score in our testings.
An interesting observation is the fact that the en-
hanced embeddings seem to increase the general-
ization error (compare Figure 2). The Baseline
model trained on the GloVe embeddings, for ex-
ample, shows a difference in the final validation
and training loss of around 0.17 and increases for
the BERT and Flair embeddings to roughly 0.60
and 0.48, respectively.

5 Discussion

Given the experimental results, we discuss the re-
sulting implications for our two research questions
and conclude this section by presenting some lim-
itations.

5.1 Attention Layers

Our results suggest that the attention encoding
does not increase the performance of the model,
as we hypothesized above. This is true for both,
the input and the error encoding. A potential
explanation is the fact that we use the attention
mechanism as an additional layer to encode the
input. Other approaches, like Morio and Fujita
(2018) or Stab et al. (2018), incorporate it into the
Bi-LSTM architecture and calculate the weight of
the hidden states at every time step.
While the performance does not decrease
meaningfully for the Baseline+input and
Bi-LSTM+input models (using the GloVe
embeddings as features), it does for the error
encoding Baseline+error model. This drop might
be explained by the vector space the attention
mechanism is working on. Due to its small size of
only four features, it is unlikely that the resulting
vector has a meaningful encoding.
A deeper inspection of the output values from
the different layers in the network and how they
influence the overall classification task might give
more insight into the cause of the problem.

5.2 Contextualized Word Embeddings

For most of the tests we conduct, the contextual-
ized embedding approaches do not improve upon
the GloVe embeddings. This is especially true for
the architectures that include an attention layer,
which does not seem to be able to handle the en-
coding of high dimensional vectors very well. The
results further suggest that the amount of neurons
in the Bi-LSTMs is not an issue in this case, since
the Baseline model achieves comparable results
across all three embeddings.
A potential way to improve the results of the en-
hanced embeddings is to contextualize them on the
paragraph level. While we contextualize them on
a sentence level, the dependencies between argu-
ments might span over multiple sentences, some-
times even a paragraph, as described by Stab and
Gurevych (2017) for the Persuasive Essays data
set. Following this reasoning, one might think that
a document level contextualization makes sense
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Figure 2: The loss curves of the Baseline architecture using different input embeddings. Figure (a) shows the
training process of the model using the GloVe embeddings, while the model in Figure (b) used the BERT embed-
dings and Figure (c) the Flair embeddings. The orange line shows the training loss, the green line the validation
loss.

and adds even more information to the embed-
ding. For the task of AM, however, we argue
against this for two reasons. First, argumentative
units usually do not span over the whole document
and it might include additional counter-arguments
(Stab and Gurevych, 2017). The contextualization
would most likely cause a lot of noise and make
the vector less useful. Also, depending on the size
of the document, the size of the vector might be
too small to hold the contextual information of the
full document. Second, the model trained on such
embeddings would probably not generalize very
well. An argumentative document can be written
in different formats with different purposes, like
an essay, a speech or a newspaper article. Contex-
tualizing the embeddings on the document level
might then also encode the structure of the text
and decrease the cross-domain applicability of the
model. However, further research is needed.

5.3 Limitations

The results we report and analyze above are the
networks’ performance as validated on the data
splits provided by Stab and Gurevych (2017). Due
to time and resource restrictions, we evaluate the
results after a single training run and perform nei-
ther an averaging over multiple runs nor any cross-
validation. Both could lead to more robust results.
As another consequence of the above-mentioned
restrictions, we are also not able to test the model’s
generalization capabilities on different data sets.
For the learning rate, we perform only a ba-
sic Bayesian hyperparameter optimization (Snoek
et al., 2012) with four iterations per model. These
limitations are especially important for the varia-
tions of the Baseline architecture, since the per-
formed changes to the architecture, even though

rather small, entail the need for independently
tuned hyperparameters.
Furthermore, an additional evaluation of the dif-
ferent contextualization levels for the embeddings
could provide a clearer picture of how much
the results actually improve, compared to non-
contextualized methods.

6 Conclusion

Recent improvements in utilizing contextual in-
formation for sequence processing had a big im-
pact on the area of NLP, namely advances of at-
tention architectures and contextualized word em-
beddings. For example, the Transformer architec-
ture (Vaswani et al., 2017) employs attention to
achieve sota scores on different NLP tasks. Fur-
ther, the Flair model (Akbik et al., 2018) incorpo-
rates character-wise context to generate enhanced
word representations.
In this paper, we report on the usefulness of these
two approaches for the task of AM. First, we are
able to show that an attention layer as additional
encoding of the input does not improve upon the
current sota approach of a Bi-LSTM. Addition-
ally, the attention mechanism seems to fail for a
low-dimensional vector space. Second, we present
the impact of contextualized word embeddings for
AM. Although the Flair embeddings slightly im-
prove upon the performance of the GloVe embed-
dings for the Baseline architecture, we can not
confirm any advantage over non-contextualized
embeddings.

6.1 Future Work

A first extension of this work could be a proper hy-
perparameter optimization for the attention-based
models. Second, we plan to explore an attempt to
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fine-tune solely attention based pre-trained models
like BERT (Devlin et al., 2018) to domain-specific
data. Recent research by Howard and Ruder
(2018) in transfer-learning for NLP has shown
great improvement for several NLP-downstream
tasks, while reducing the needed amount of la-
beled training data.
Third, we contextualize the embeddings on the
sentence level only. According to Stab and
Gurevych (2017), arguments can sometimes span
over multiple sentences. Therefore, the contextu-
alization of the embeddings could be extended to
a paragraph level, in order to make use of possible
inter-dependencies within it. Additionally, a fine-
tuning approach of the underlying LMs to the AM
task could further enhance the embeddings.
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Abstract
In recent years, argumentation mining, which
automatically extracts the structure of argu-
mentation from unstructured documents such
as essays and debates, is gaining attention. For
argumentation mining applications, argument-
component classification is an important sub-
task.

The existing methods can be classified into su-
pervised methods and unsupervised methods.
Many existing supervised methods use a clas-
sifier to identify the roles of argument compo-
nents, such as“ claim”or“ premise”, but
many of them use information of a single sen-
tence without relying on the whole document.
On the other hand, existing unsupervised doc-
ument classification has the advantage of be-
ing able to use the whole document, but accu-
racy of these methods is not so high.

In this paper, we propose a method for
argument-component classification that com-
bines relation identification by neural net-
works and TextRank to integrate relation infor-
mations (i.e. the strength of the relation). This
method can use argumentation-specific knowl-
edge by employing supervised learning on a
corpus while maintaining the advantage of us-
ing the whole document.

Experiments on two corpora, one consisting of
student essays and the other of Wikipedia arti-
cles, show the effectiveness of this method.

1 Introduction

In recent years, argumentation mining, which au-
tomatically extracts the structure of argumentation
from unstructured documents such as essays and
debates, is gaining attention.

Argumentation mining consists of the following
four subtasks (Potash et al., 2017).

1. Extracting the argument component (AC for
short) from a given document (component
idenfication).

2. Assigning a label such as claim or premise to
each AC (component classification).

3. Determining whether each pair of ACs is re-
lated or not (relation identification).

4. Assigning a label such as attack or support to
the related pairs of ACs (relation classifica-
tion).

We focus on component classification. Gener-
ally, an AC is classified as a claim or a premise.
A claim is the conclusion of an argument, and a
premise is an assumption or reason to induce the
conclusion.

In this paper, we propose a method that can be
applied to new domains of argumentation with lit-
tle cost.

Previous methods of component classification
can be classified as supervised document classi-
fication and unsupervised document classification
using topic models or TextRank, a ranking algo-
rithm. Many existing methods of supervised docu-
ment classication perform classication using a sin-
gle sentence without relying on the whole docu-
ment. Existing unsupervised document classifi-
cation has the advantage of being able to use the
whole document, but it can not use argumentation
specific knowledge, such as the fact that “there-
fore” relates a conclusion with its reason.

In this paper, we propose a framework for
component classification using the argumentation-
specific knowledge by employing supervised
learning on a corpus while maintaining the advan-
tage of using the whole document.

The research on component classification has
been done on various domains of argumentation.
(Levy et al., 2014) proposed a method to extract
from a Wikipedia artitle a sentence including Con-
text Dependent Claim (CDC) that directly sup-
ports the topic of the article by combining context-
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free and context-dependent features such as the
cosine similarity between the topic of the article
and the sentence. (Lippi and Torroni, 2015) pro-
posed a method to extract a CDC from a sentence
using a support-vector machine (SVM) with Tree
Kernels on the phrase structure of the sentence.
As for student essays, (Stab and Gurevych, 2014)
proposed a method to classify a sentence as a ma-
jor claim, claim, or premise using an SVM on the
basis of features such as the position of the AC in
a paragraph and a clue expression. However, these
methods have a disadvantage in that new features
must be developed in order to apply said methods
to a new domain of argumentation.

(Daxenberger et al., 2017) proposed a method
to extract claims in various domains of argumen-
tation using a recurrent neural network (RNN) and
convolutional neural network (CNN). These are
methods for classifying a sentence, so they cannot
use information outside of the sentence. This is a
significant disadvantage for these methods in com-
ponent classification because the role of an AC is
determined relatively to those of other ACs in the
document. For example, the probability that an
AC is a claim is higher if the AC is supported by
some premises. Thus, using the relation of an AC
to other ACs is important when classifying the AC.

Some researchers have tried to improve the per-
formance of component classification by employ-
ing the relation information between ACs. In
(Stab and Gurevych, 2017), the results of compo-
nent classification and relation identification are
combined to improve both of their performances
using integer programming. In this method, the
cost to apply a new domain of argumentation is
high because hand-crafted features are highly de-
pendent on the domain of argumentation such as
the position of AC in the argumentation or a clue
expression.

In (Potash et al., 2017), component classifica-
tion and relation identification between ACs are
performed simultaneously using a PointerNet neu-
ral network. This improves the classification per-
formance. In this research, the dependency rela-
tion is limited to within a paragraph, and the whole
document cannot be used.

There is also research on component classifica-
tion using unsupervised learning. (Ferrara et al.,
2017) proposed a method to extract a sentence
including AC, extract a major claim (the stand-
point of the author for the topic of an es-

say), and classify ACs using a topic model.
In (Petasis and Karkaletsis, 2016), sentences in-
cluding a major claim and a claim are ex-
tracted by ranking the sentences using the Tex-
tRank (Mihalcea and Tarau, 2004) on the basis of
the similarity of sentences. These studies use rela-
tions among ACs in a document and are not depen-
dent on the domain of argumentation. However,
these methods are not highly accurate.

In this paper, we propose a neural network to
evaluate the probability of there being a relation
between ACs and to rank ACs using TextRank on
the basis of probability.

Our method uses argumentation-specific knowl-
edge for relation identification between ACs, and
the results are used for component classifica-
tion. The argumentation-specific knowledge is ex-
tracted by a neural network from a small corpus.
Thus, this method can be applied to various do-
mains of argumentation with little cost. We ap-
plied the proposed method to two domains of ar-
gumentation and had positive results.

2 Previous Methods

2.1 Component Classification using
TextRank

In this section, we explain what TextRank is and
discuss previous methods of component classifi-
cation using TextRank.

TextRank is a PageRank-based ranking algo-
rithm applied to natural language processing. It
has been used for keyword extraction and extra-
neous document summarization. In TextRank, a
document is represented by a weighted directed
graph with a fragment of a text such as a sentence,
phrase, or word as a node; a metric between two
nodes are used as a weight on the edge between
the nodes. From this directed graph, a recurrent
equation is generated and its solution is used to
determine the rank of the nodes.

For example, suppose that a weighted direct
graph G = (S,E) is obtained from a document
D = {S1, ..., Sn}. Here, E ⊆ S × S and Eij

(1 ≤ i, j ≤ n) are a directed edge from sentence
Si to sentence Sj . For a directed edge Eij , a metric
w(Si, Sj) from a sentence Si to Si is used as the
weight of the edge. Then, WS(Si) determined by
Eq. 2 is used as the score of the sentence Si.

W (Si, Sj) =
w(Si, Sj)∑

Sk∈Out(Si)
w(Si, Sk)

(1)
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WS(Si) = (1−d)+d∗
∑

Sj∈In(Si)

W (Sj , Si)·WS(Sj) (2)

In(Si) is the set of sentences that have an
outgoing edge to the sentence Si, and Out(Sj)
is the set of sentences that have an incoming
edge from Sj . d is a hyperparameter (random
surfer rate) taking a value between 0 and 1. In
the previous work (Petasis and Karkaletsis, 2016;
Ferrara et al., 2017), the term frequency inverse
document frequency (TFIDF) cosine similarity be-
tween sentences Si and Si was used as w(Si, Sj).
In (Petasis and Karkaletsis, 2016), the score was
determined for each sentence, and the method was
evaluated correct if the top one or two sentences
according to the score includes the target major
claim or claim.

2.2 Relation Identification between
Argument Components

In this section, we give an overview of re-
search on relation identification between ACs.
(Stab and Gurevych, 2017) performed a binary
classification of whether or not there is a relation
between two ACs using SVM on the basis of fea-
tures extracted from ACs in the domain of student
essays. (Nguyen and Litman, 2016) performed
a classification of the relation between ACs us-
ing features obtained from the information around
the AC as well as the features obtained from the
AC itself. (Rinott et al., 2015) classified evidence
(claim dependent evidence: CDE) into Study, Ex-
pert, and Anecdotal in accordance with their prop-
erties in Wikipedia articles of a random topic, and
then extracted CDE of each Claim using a com-
bination of logistic regression (LR) classifiers. In
these studies, features used for classification have
to be prepared by hand, so these methods have the
disadvantage of a high cost to develop the features.

(Cocarascu and Toni, 2017) classified the rela-
tion between ACs with neural networks using a
corpus they developed.

In this paper, we propose a method that can be
applied to various domains of argumentation with
little cost. We think that preparing a small corpus
with labels is acceptable for better accuracy, but
developing new features is too costly because for
developing new features, skills on feature enginer-
ing as well as knowledge on the domaim of argu-
ment are required. For these reasons, we employ a
novel neural network to determine the probability
that an AC is related to other ACs as in the ap-

proach of (Cocarascu and Toni, 2017), use proba-
bility as the weight for TextRank, and use the score
of the AC as the likelihood that the AC is major
claim or claim.

3 Proposed Method

In this section, we explain our approach. Section
3.1 explains the neural network we use to identify
the relations between ACs. Section 3.2 explains a
method for extracting claims by applying the Tex-
tRank algorithm to the identified relation.

3.1 Relation Identification
We use a neural network for identifying the rela-
tions between ACs. The neural network is used
to convert an AC into a single sentence vector and
to output the probability that there exists a rela-
tion between a pair of ACs using the vectors of the
ACs. The neural network consists of

1. a neural network to convert an AC into a sin-
gle sentence vector, and

2. a neural network to assess the relatedness of
the vectors of two ACs.

We tested long short-term memory (LSTM) and a
CNN for Step 1. In Step 2, we tested the following
two methods to combine the vectors of two docu-
ments obtained in Step 1. In the first method, we
concatenated the two vectors and fed them to the
fully connected layer. In the second method, we
fed the two vectors as a sequence to LSTM, and
the hidden units of LSTM were concatenated and
sent to the fully connected layer.

We evaluated the neural networks on the basis
of their performance when combined with Tex-
tRank. Figure 1 shows the neural network that ob-
tained the best performance.

The input to the neural network is a pair con-
sisting of ACi = (w1, w2, ...wk) and ACj =
(w′

1, w
′
2, ...w

′
k′), where wl is a word in an AC

and k and k′ is the length of the ACi and ACj .
ACi and ACj are converted into word vectors
Vi = (v1, v2, ...vk) and Vj = (v′

1, v
′
2, ...v

′
k′) in the

embedding layer. vl is a word vector for a word wl.
They are transformed by LSTM to make sentence
vectors VACi and VACj . VACi and VACj are con-
catenated and sent to the next LSTM layers. Then,
hidden state of each timesteps of LSTM layer are
concatenated and sent to the next dense layers. Fi-
nally, the softmax function produces the estimated
probability of the relation of the pair.
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Figure 1: Proposed neural network for relation identi-
fication: LSTM and dense network

If there is a relation between ACi and ACj , we
denote the pair as link, and otherwise as nolink.

3.2 TextRank for Argument Mining

The relation identifier in Section 3.1 yields the
probability P (link|Si, Sj) from ACi to ACj . We
use this estimated probability P (link|Si, Sj) as
w(Si, Sj) in Eq. 1. Because there is no ground to
determine w(Si, Si), we empirically set w(Si, Si)
to 1.

4 Experiment

In this section, we explain the corpus we use, ex-
perimental setting, and results.

4.1 Data

We used two copora in this experiment, one
consisting of student essays and the other of
Wikipedia articles.

4.1.1 Student Essay
(Stab and Gurevych, 2017) distributed an-
notated student essays in English extracted
from the online forum essayforum.com at
https://www.informatik.tu-darmstadt.de/
(Argument Annotated Essays (version 2)). The
annotation consists of classification labels of the
ACs and the relations among the ACs. We call
this corpus “Student Essay.” The basic figures of
Student Essay are shown in Table 1.

As for the classification, ACs are classified as
major claims, claims, and premises. A major
claim shows the standpoint of the author on the
topic of the essay. A claim supports or attacks the

major claim. A premise is an assumption or a rea-
son in an argument and supports or attacks a claim
or another premise.

Regarding relations between ACs, the relation
between claims is generally marked as for or
against and that between premises as support or
attack. In this paper, however, we do not use these
types of relation (i.e. for, against, support, or at-
tack). Rather, if there exists a relation of any type
between a pair of ACs, we consider the pair as a
positive example. Other pairs of ACs could serve
as negative examples. However, the number of
such negative examples is much larger than that
of positive examples. In addition, most of the neg-
ative example AC pairs are irrelevant to learning.
Thus, we used only the reverse pairs (i.e. major
claim and claim, major claim and premise, and
claim and premise) as negative examples.

4.1.2 Wikipedia Article
(Aharoni et al., 2014) distributed annotated
Wikipedia articles1 with the topic labels, claim
(CDC), and context dependent evidence (CDE).
A topic is a short statement of the subject of
an article. CDC is a statement supporting or
attacking the topic that is directly related to a
main claim of the article. CDE is a text fragment
directly supporting some CDC under the topic
of the article. We call this corpus “Wikipedia
Article.” The basic figures of Wikipedia Article
are shown in Table 2.

CDE can be classified as Study, Expert, and
Anecdotal according to the type of evidence.
Study is CDE backed by quantitative analysis. Ex-
pert is CDE backed by an expert (person or orga-
nization). Anecdotal is CDE backed by an event
or example. In this experiment, if CDC and CDE
in an article were related, we used the pair as a
positive example. Otherwise, they were used as
a negative example. We did not use the different
types of CDE.

Table 1: Student Essay

essay Type of AC Relation
MajorClaim Claim Premise link nolink

402 751 1506 3832 6673 91798

4.2 Proposed Method
In this section, we explain the experimen-
tal details of the proposed method. For

1http://www.research.ibm.com/haifa/dept/vst/debating data.shtml
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Table 2: Wikipedia Article

essay Type of AC Relation
CDC CDE link nolink

102 350 795 1291 31634

word vectors, we used pretrained word
vectors with 300 dimensions available at
https://code.google.com/archive/p/word2vec/.

The neural network was implemented in Keras2.
For Student Essay, we used the following set-

tings. LSTM had 64 units. The fully connected
layer had 64 units with a dropout rate of 0.5. A sig-
moid function was used in the output layer. Binary
cross-entropy was used as the loss function. The
batch size was 128. Early stopping was employed
using validation loss. The longest AC consisted of
67 words with 7238 words in vocabulary. We em-
ployed five-fold cross validation for testing. Ten
percent of the training data was used as validation
data.

For Wikipedia Article, we used the following
settings. LSTM had 32 units. The fully connected
layer had 64 units with a dropout rate of 0.3. A
sigmoid function was used in the output layer. Bi-
nary cross-entropy was used as the loss function.
The batch size was 128. Early stopping was em-
ployed using validation loss. The longest AC was
254 words with 6412 words in vocabulary. We
employed ten-fold cross validation for testing be-
cause the data size of Wikipedia Article is smaller
than that of Student Essay. Ten percent of the
training data was used as validation data.

The hyperparameter d of TextRank was set 0.85
throughtout the experiments.

Figure 2: The Number of ACs vs. That of Claims in
Wikipedia Article

2https://keras.io/

4.3 Previous Work: TextRank-TFIDF and
TextRank-W2V

Here, we explain the similarities used in Tex-
tRank for comparison. For the similarity of
TFIDF, we used the TFIDF vectors as used
in (Petasis and Karkaletsis, 2016). We call
this TextRank with the TFIDF cosine similarity
“TextRank-TFIDF”.

For the similarity of word2vec, we used the vec-
tor obtained by averaging the vectors of words
in a sentence. For the word vectors, we used
pre-trained Word2Vec with 300 dimensions at
https://code.google.com/archive/p/word2vec/. We
call TextRank with the word2vec consine similar-
ity “TextRank-W2V”.

4.4 Previous Work: Supervised Component
Classification

Here, we explain the detail of supervised compo-
nent classification for comparison. Because Stu-
dent Essay has major claims and claims, we con-
structed two classifiers: the one which detects only
major claims and another which detects all claims
(including the major claims). For the classifier, we
used a neural network classifier. As for the neural
networks, we tested LSTM, bidirectional LSTM
(biLSTM), and CNN. The input to the network
was a sequence of AC word vectors. The output
was whether the input AC is major claim (claim)
or not. We used the following settings. LSTM and
biLSTM had 64 units. The fully connected layer
had 64 units with dropout rate 0.5. A sigmoid
function was used in the output layer. The binary
crossentropy was used as the loss function. The
CNN had the kernel sizes 3, 4, and 5. The num-
ber of filters was 64. The max pooling had pool-
size 2. The fully connected layer had 64 units with
dropout rate 0.5. A sigmoid function was used in
the output layer. Binary crossentropy was used as
the loss function.

To discriminate major claims, claims, and
premises, we used three-way classification. For
three-way classification, we employed the softmax
function. For the loss, we used categorical cross
entropy.

We employed five-fold cross validation for test-
ing. Ten percent of the training data was used as
validation data for early stopping.

For word vectors, we used the pre-trained
Word2Vec with 300 dimensions available at
https://code.google.com/archive/p/word2vec/.
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Table 3: Results of Claim Detection using TextRank in Student Essay

TextRank-TFIDF TextRank-W2V Our Model
evaluation metrics total correct essay accuracy correct essay accuracy correct essay accuracy
MajorClaim@1 402 116 0.289 79 0.197 218 0.542
MajorClaim@2 402 173 0.430 128 0.318 282 0.701
MajorClaim@3 402 215 0.535 176 0.438 326 0.811

Claim@1 402 252 0.627 198 0.493 319 0.794
Claim@2 402 330 0.821 291 0.724 372 0.925
Claim@3 402 361 0.898 337 0.838 392 0.975

Table 4: Results of Claim detection using TextRank in Wikipedia Article

TextRank-TFIDF TextRank-W2V Our Model
evaluation metrics total correct essay accuracy correct essay accuracy correct essay accuracy

Claim@1 104 13 0.125 2 0.019 101 0.971
Claim@2 104 44 0.423 30 0.288 103 0.990

Table 5: Averaged Rank of Major Claim, Claim, and
Premise in Student Essay

Component Type TextRank-TFIDF TextRank-W2V Our Model
MajorClaim 6.397 7.071 3.883

Claim 7.609 8.050 6.664
Premise 9.399 9.093 10.263

Table 6: Average Rank of Claim and Premise in
Wikipedia Article

Component Type TextRank-TFIDF TextRank-W2V Our Model
Claim 17.162 17.780 4.747

Premise 14.368 14.089 19.959

4.5 Evaluation Method

For the comparison between our method and
TextRank-TFIDF/TextRank-W2V, we used
Claim@k and MajorClaim@k as evaluation met-
rics. In MajorClaim@k, the result is considered
correct if the top k according to the ranking
includes the target major claim. In Claim@k, the
result is considered correct if the top k according
to the ranking includes the target claim and
major claim. In Student Essay, MajorClaim@k
and Claim@k were evalueted for k = 1, 2, 3.
Wikipedia Article does not include major claim,
so the evaluation was done only for Claim@k.
The number of ACs varies significantly, and the
minimum is 2, so we report Claim@k for k = 2 to
evaluate all the ACs. The number of articles that
had two ACs was 24 out of 102. This means that
these 24 articles are considered correct regardless
of the output of the classifier when evaluating at
Claim@2. So we should be careful that there is
possibility of overestimation.

For component classification, we employed the
precision, recall, and F-score as evaluation met-

Table 7: Precision and Recall detecting Claim in Stu-
dent Essay

Method Precision Recall F-Score
Claim@1 0.794 0.146 0.247
Claim@2 0.748 0.276 0.403
Claim@3 0.715 0.395 0.509
Claim@6 0.602 0.661 0.630
Claim@7 0.571 0.731 0.641

LSTM 0.60 0.62 0.61
BiLSTM 0.57 0.61 0.59

CNN 0.58 0.58 0.58

Table 8: Precision and Recall detecting Major Claim in
Student Essay

Method Precision Recall F-Score
MajorClaim@1 0.542 0.298 0.384
MajorClaim@2 0.437 0.472 0.454
MajorClaim@3 0.371 0.602 0.458

LSTM 0.44 0.39 0.41
BiLSTM 0.49 0.35 0.41

CNN 0.49 0.31 0.38

rics that are often used in text classification. Our
method obtains a rank of the ACs. For compari-
son, we set a threshold; if the rank was higher than
the threshold, we considered the AC to be a major
claim or claim. We used 1-3 as the threshold for
Student Essay.

The number of ACs varies more for Wikipedia
Article, ranging from a minimum of 2 to maxi-
mum of 103, with an average of 11.12. Thus, if we
were to employ a small, fixed threshold, the recall
would get smaller for an article with many ACs.
In order to resolve this problem, we employed a
linear regression to predict the number of claims
from the number of ACs and used the prediction
as a threshold. We call this “@adaptive.” For the
regression on Wikipedia Article, the regression co-
efficient was 0.232, and the intercept was 0.873
with R-squared as 0.846. The fitted line is drawn
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Table 9: Precision and Recall detecting Claim in
Wikipedia Corpus

Method Precision Recall F-Score
Claim@adaptive 0.832 0.875 0.853

Claim@1 0.971 0.554 0.706
Claim@2 0.788 0.734 0.760

LSTM 0.89 0.97 0.93
BiLSTM 0.92 0.86 0.90

CNN 0.94 0.91 0.93

in Fig. 2.
For Student Essay, we evaluated a case wherein

only major claims is considered and one wherein
both major claims and claims are considered.

4.6 Experimental Result and Discussion

Tables 3 and 4 show the results using our method
and TextRank-TFIDF/TextRank-W2V to Student
Essay and Wikipedia Article.

For Student Essay, our proposed method outper-
formed the previous TextRank-TFIDF/TextRank-
W2V. In particular, our method achieved 0.542,
which is significantly better than the 0.289 of
TextRank-TFIDF, for major claims.

Simply employing word vectors alone did not
improve the performance; MajorClaim@1 was
0.197 for TextRank-W2V while it was 0.289 for
TextRank-TFIDF.

Table 5 shows the averaged rank of major
claims, claims and premises. For TextRank-
TFIDF/TextRank-W2V, the difference in the av-
eraged ranks for major claims, claims, premises
is small, and they are not well separated. In
our proposed method, the averaged ranks of ma-
jor claims, claims, and premises are 3.883, 6.664,
and 10.263, respectively, and they are well articu-
lated. For Wikipedia Article, our method correctly
assigns a higher rank to claims while TextRank-
TFIDF/TextRank-W2V incorrectly assign a higher
rank to premises.

Tables 7, 8, and 9 show the result of compar-
ison of our method to the neural network classi-
fiers. Our method ranks ACs into specified types
of AC: major claim, claim, or premise for Stu-
dent Essay. Because the neural network classifiers
are classifiers, in order to make a comparison, we
set a threshold on the rank to make classification.
For Wikipedia Article, because the number of ACs
varies, we use an adaptive threshold explained in
Section 4.5.

For Student Essay, our method was the best in
F-Score for major claim with 3 as the threshold,

Table 10: F-Score of three-way Classification of Ma-
jorClaim, Claim, and Premise of Student Essay

Method MajorClaim Claim Premise
LSTM 0.37 0.34 0.75

BiLSTM 0.27 0.22 0.76
CNN 0.33 0.30 0.75

Table 11: Confusion Matrix of three-way Classifica-
tion of MajorClaim, Claim, and Premise using LSTM
of Student Essay for 20% test set of Table 1

MajorClaim Claim Premise
MajorClaim 44 44 71

Claim 18 96 201
Premise 19 113 612

and also for claim with 7 as seen in Tables 7 and
8. This shows the effectiveness of our method for
classifying AC into major claim and claim.

For Student Essay, our method is better than the
neural network classifier. Table 10 shows the F-
score for three-way classifier. In this table, LSTM
and biLSTM are slightly better than CNN, but the
difference is small. It is notable that the score is
high for premise, but it is low for major claim and
claim. Table 11 shows the confusion matrix for
LSTM. The table shows this more clearly. Our
method is effective for discriminating major claim
and claim because major claim and claim are sep-
arated by ranking,

For Wikipedia Article, the neural network clas-
sifier marked better F-Scores. This can be
understood that the argumentation structure of
Wikipedia Article is more controlled and can be
extracted just by the neural network classifier. We
show the confusion matrix for LSTM of Wikipedia
Article at Table 12.

However our method is better than the neural
network classifier in the precision of @1 in Table
9. If one want to find out not all the claim but main
claim, our method can serve better.

In summary, our method outperformed the pre-
vious methods for Student Essay. For Wikipedia
Article, our method was slightly worse than the
neural network classifiers.

5 Conclusion and Future Work

In this paper, we proposed a method to classify
claim (major claim) by the combination of the
neural network to determine the relation between
ACs and TextRank to integrate the relation infor-
mation to rank claim (major claim) higher. The
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Table 12: Confusion Matrix of Classification of Claim,
and Premise using LSTM of Wikipedia Article for 20%
test set of Table 2

Claim Premise
Claim 70 2

Premise 9 151

experiments on Student Essay and Wikipedia Arti-
cle show that the proposed method performed bet-
ter in major claim and claim classification com-
pared with TextRank with unsupervised similar-
ity measure. This shows the effectiveness of uti-
lizing the relation between ACs. Compared with
the neural network classifier, the proposed method
performed better for Student Essay, and not better
in F-Score but better in precision for Wikipedia
Article. Thus, if we need more precision such as
the case that we want to find out only claim, the
proposed method has an advantage. In addition,
the proposed method performed well for a rather
complex argument structure such as major claim,
claim, and premise utilizing the ranking produced
by the method. In summary, the proposed method
performed well for multiple corpora with different
argument structures and varying number of ACs.

We are going to use word vectors using the con-
textual information to improve the relation iden-
tification and also test other ranking algorithms
such as RankNet (Burges et al., 2005) and ListNet
(Cao et al., 2007).
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Abstract

The purpose of this study is to deploy a novel
methodology for classifying different argu-
mentative support (supporting evidences) in
arguments, without considering the context.
The proposed methodology is based on the
idea that the use of Tree Kernel algorithms
can be a good way to discriminate between
different types of argumentative stances with-
out the need of highly engineered features.
This can be useful in different Argumentation
Mining sub-tasks. This work provides an ex-
ample of classifier built using a Tree Kernel
method, which can discriminate between dif-
ferent kinds of argumentative support with a
high accuracy. The ability to distinguish dif-
ferent kinds of support is, in fact, a key step
toward Argument Scheme classification.

1 Introduction to the Argument Mining
Pipeline

Argument Mining (AM) is a field of growing in-
terest in the scientific community and a growing
number of works have been written about this
topic in the last few years (Cabrio and Villata,
2018; Lippi and Torroni, 2015). Since it is a rel-
atively young research domain, its specific target
area is huge and its taxonomy is relatively flexi-
ble, for example Argument Mining and Argumen-
tation Mining are used interchangeably. In spite of
this flexibility, it is possible to define a unique and
broad target, which is the extraction of argumen-
tative units and their relations from data.

Another characteristic of AM is its close con-
nection with other domains such as Knowledge
Representation and Reasoning, Computational
Argumentation, Information Extraction, Opinion
Mining, Human-Computer Interaction. Also,
there is a strong relation between AM and Natu-
ral Language Processing (NLP), since language is
the means by which humans express arguments.

Habernal et al. (2014) noticed a relation be-
tween Opinion Mining (also known as Sentiment
Analysis) and Argument Mining. The former aims
to detect what people say, the latter wants to un-
derstand why. For this reason, Lippi and Torroni
(2015) consider AM as an evolution of Opinion
Mining in terms of targets.

Being AM a multifaceted problem, it can be
useful to imagine it as a pipeline (with much re-
search focused on one or more of the involved
steps). For example, Lippi and Torroni (2015)
described it as a three-steps process, from a Ma-
chine Learning perspective. The first step is
to discriminate between argumentative and non-
argumentative data; the second step is to detect
argument boundaries; the third step is to predict
the relations between arguments or between ar-
gumentative components. The second and third
step are strictly dependent on the underlying argu-
mentative model (the most frequently used is the
claim/premise model described in Walton et al.,
2008, while another frequent choice is the model
proposed by Toulmin, 2003). Cabrio and Vil-
lata (2018) proposed a simpler two-step pipeline,
where the first phase is the identification of argu-
ments and the second step is the prediction of ar-
gument relations. In this case, the first step in-
volves not only the classification argumentative vs
non-argumentative, but also the sub-tasks of iden-
tifying arguments components (claims, premises,
etc.) and their boundaries. While, the second
step comprises predicting the heterogeneous na-
ture of argument relations (e.g., supports, attacks)
and the links between evidences (premises) and
claims (conclusions). For the purposes of this pa-
per, this two-step pipeline will be considered.

In an ideal AM pipeline, after having de-
tected the argumentative units, their relations (e.g.,
premises, conclusions) and the nature of their rela-
tions (e.g., support, attack), the further step is to fit
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this argumentative map into a suitable Argument
Scheme (e.g., argument from Expert Opinion, ar-
gument from Example).

To do so it is necessary to develop classifiers
able to discriminate between different kinds of ar-
gumentative evidences. This work is an attempt to
give a contribution to the achievement of this sub-
task of the pipeline, finding a working methodol-
ogy to discriminate between different types of sup-
port prepositions (or evidence), since being able to
classify different kind of support is a crucial aspect
when dealing with the classification of Argument
Schemes.

In particular, the proposed methodology is
based on the use of Tree Kernels (TKs).

2 Related Works

This work presents an approach for classifying
evidence typology within arguments using Tree
Kernels (TKs, described in Moschitti, 2006) with
the aim to facilitate the detection of Argument
Schemes. TKs have already been used success-
fully in several NLP-related works, for example
in semantic role labelling (Moschitti et al., 2008),
metaphor identification (Hovy et al., 2013) and
question answering (Filice and Moschitti, 2018).
However, the application of TK in the domain
of AM has been relatively limited compared to
other methodologies mostly that are dependent on
highly engineered feature sets. One of the first
use in Argumentation Mining was proposed by
Rooney et al. (2012), who simply employed se-
quences of Part-of-Speech tags. At that moment,
however, the Argumentation Mining community
was still too young. Some years later, Lippi and
Torroni (2015) suggested to exploit the potentiali-
ties of TKs for detecting arguments (the first step
in the Argument Mining pipeline) and presented
a promising tool for automatically extract argu-
ments from text (Lippi and Torroni, 2016). Inter-
estingly, TKs have been used to specific domains:
Mayer et al. (2018) exploited them for an AM ap-
proach related to Clinical Trials, while promising
results have been achieved also in the legal do-
main (Lippi et al., 2015, 2018). TKs have also
been used in (Wachsmuth et al., 2017) for analyz-
ing the similarities between argumentative struc-
tures, thus focusing not on the level of the sen-
tences (step one), but on the level of the argumen-
tative relations (step two of the Argument Mining
pipeline).

To the best of our knowledge, this is the first
attempt to use TKs in the very last part of the
Argument Mining pipeline. In fact, the approach
presented here aims to differentiate different kinds
of evidences (or premises), which is an important
sub-task when trying to detect the most suitable
Argumentative Scheme.

Other studies tried to classify arguments by
scheme using different approaches. For example,
Feng and Hirst (2011) created a complex pipeline
of classifiers that achieved and accuracy ranging
from 63 to 91% in one-against-others classifica-
tion and 80-94% in pairwise classification. In an-
other study Lawrence and Reed (2016) achieved a
similar result, with F-scores ranging from 0.78 to
0.91. However, these two works employed a set of
highly engineered features, which is exactly what
this study wants to avoid.

3 Tree Kernels Methods

From a very general perspective, a classification
problem can be considered as an attempt to learn
a function f able to map in the best way an input
space X to an output space Y , where the former is
the initial vector space and the latter is the set of
target labels. While in many cases the input space
is composed of simple features such as Bag-of-
Words or n-grams occurrences, sometimes highly
engineered (and costly) features are needed, es-
pecially when dealing with complex classification
problems like those typically encountered in the
AM pipeline. TK methods can solve the problem
of costly engineered features, embedding in the in-
put space X more complex structural information
(e.g., graphs, trees) without creating ad-hoc fea-
tures. In other words, sentences can be converted
into tree representations and their similarity can be
calculated by considering the number of common
substructures (fragments).

Kernel machines classifiers, such as support-
vector machine (SVM), have been widely used in
classification problems. A kernel can be consid-
ered as a similarity measure that is able to map the
inputs of an original vector space X into an high-
dimensional feature space V implicitly, which is to
say without the need to calculate the coordinates
of data in the new space. More specifically, a ker-
nel k(x,x′) (where x and x′ belong to the input
space X and represent the labelled and unlabelled
input respectively) can be represented as an inner
product in a high-dimensional space V . In this re-
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gard, the kernel can be considered as a mapping
ϕ : X → V where ϕ is an implicit mapping. The
kernel function can be thus represented as:

k(x,x′) = 〈ϕ(x), ϕ(x′)〉V (1)

Where 〈., .〉V must necessarily be an inner prod-
uct.

Given a training dataset of n examples
{(xi, yi)}ni=1, where i ∈ {c1, c2} with c1 and c2
being the specific classes of a binary classification,
the final classifier ŷ ∈ {c1, c2} can be calculated
using the above-mentioned kernel function in the
following way:

ŷ =
n∑

i=1

wiyik(xi,x
′) (2)

Or:

ŷ =
n∑

i=1

wiyiϕ(x).ϕ(x′) (3)

Where wi are the weights learned by the trained
algorithm.

A TK can be considered a similarity measure
able to evaluate the differences between two trees.
Before selecting the appropriate TK function, two
important steps should be considered: choosing
the type of tree representation and the type of frag-
ments. In this work, sentences have been con-
verted into Grammatical Relation Centered Tree
(GRCT) representations, which involves PoS-Tag
units and lexical terms. While their structures have
been divided into Partial Trees (PTs) fragments
(Moschitti, 2006), where each node is composed
of any possible sub-tree, partial or not, providing
a higher generalization. A description of various
kind of tree representations can be found in Croce
et al. (2011b), while a brief description of tree
fragments can be found in Nguyen et al. (2009)
and Moschitti (2006).

In this case, the PTK can be expressed using the
following equation (Moschitti, 2006):

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (4)

Where T1 and T2 are the two trees whose simi-
larity should be evaluated, NT1 and NT2 are their
respective set of nodes, and ∆(n1, n2) represent
the number of common fragments in n1 and n2

(Moschitti, 2006).

DS1 n.
Expert/testimony 372
Study/statistics 281
Total 653

DS2 n.
Expert/testimony 311
Study/statistics 258
Total 569

Table 1: Number of sentences in the two datasets,
grouped by category group.

4 The Use Case

Two important Argument Mining datasets have
been considered, and they will be referred to as
DS1 and DS2. The first one is taken from Al Khat-
ibet al. (2016), while DS2 is from Aharoni et al.
(2014). This work is “downstream” from these
two previous works which interestingly contains
arguments taken from several topics, facilitating
the creation of a context-independent classifier.

Although these two datasets have been built for
different tasks, they share a very similar labelling
system. The two datasets, in fact, classify argu-
mentative text depending on three common labels
(i.e. Study/Statistics, Expert/Testimony, Anec-
dote). In this study, only the first two groups have
been considered suitable for the final purpose of
detecting evidence typology. The idea is to train
a classifier to automatically recognize when a text
is an evidence coming from studies/statistics and
when it comes from an expert opinion/testimony.

Since the two datasets have been created for
other purposes, there is a further layer of complex-
ity. For example, DS1 was composed of very seg-
mented data, and it was necessary to recompose
segmented sentences. Moreover, even though the
two datasets share a similar labelling system when
referring to some evidence typology (especially
anecdote, study/statistics and expert/testimony),
they could assume a slightly different idea of what
these labels actually describe. In spite of these
problems, their combination can be a powerful set
of data for our aims, and the results of this experi-
ment seem to confirm this assumption.

As can be seen from Table 1, a total of 653
sentences have been extracted from DS1 (372 be-
longing to the group “expert/testimony” and 281
belonging to the group “study/statistics”). While
569 sentences have been extracted from DS2 (311
for the “expert/testimony” group, 258 for the
“study/statistics” group).

After having extracted the sentences from DS1
and DS2, a Grammatical Relation Centered Tree
(GRCT) representation was created for each sen-
tence of the two datasets. Furthermore, a TFIDF
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Figure 1: The GCRT representation for the sentence
“Lucretius believed the world was composed of matter
and void”

vectorialization has been applied to each dataset.
In other words, the sentences of the two datasets

were converted into two kinds of “representation”,
with each labelled example having both a Gram-
matical Relation Centered Tree and a vector of
TFIDF BoW, representing the features of the sen-
tence.

For example, the sentence: “Lucretius believed
the world was composed of matter and void” taken
from DS2, can be represented as the GCRT in the
Figure 1 and can have the following TFIDF vecto-
rial representation:

the:0.0924 and:0.1237 of:0.1193
was:0.1095 believed:0.2526
world:0.1537 matter:0.2092
void:0.3157 composed:0.3020

The final classification algorithm was trained on

these two kinds of representations by using KeLP
(Filice et al., 2015). Since KeLP allows to com-
bine multiple kernel functions, the classification
algorithm was built as a combination of a Lin-
ear Kernel and a Smoothed Partial Tree Kernel
(SPTK) (Croce et al., 2011a), with the first kernel
related to the TFIDF vectors and the second kernel
related to the GRCT representations. More details
on kernel combinations can be found in Shawe-
Taylor and Cristianini (2004). However, to eval-
uate the contribution of TKs, the experiment was
also performed by using just one of the two repre-
sentations (SPTK or TFIDF).

More precisely, two groups of classifiers were
trained following two different strategies. The
classifiers of the first group were trained on the
653 instances of DS1, dividing it into two subsets
of 458 and 195 instances, for training and test. The
second group of classifiers was trained on the 569
instances of DS2, dividing it into two subsets of
399 and 170 sentences, for training and test. After
having been trained and tested on its given dataset,
each classifier has also been tested on the other
dataset (DS2 for the first group, DS1 for the sec-
ond group). In this way, the ability of classifiers to
generalize can be evaluated.

Since each group has three classifiers (TFIDF,
SPTK, and the combination SPTK+TFIDF), a to-
tal of six classifiers has been evaluated.

5 Results

The results can be seen in Table 2. To evaluate
the performance of the two groups of classifiers, a
simple “Majority” baseline was created. Interest-
ingly, all classifiers outperformed the baseline in
all metrics.

Overall, TKs (SPTKs, in this case) outper-
formed simple TFIDF in three cases out of four
(the TFIDF of the first classifier is the only excep-
tion). It means that TKs can not only reach the per-
formances of traditional features such as TFIDF,
but also outperform them. Noticeably, the com-
bination of TK and TFIDF has always performed
better than simple TFIDF, which means that com-
bining TKs and traditional features is a valid strat-
egy to improve performances.

The classifiers of the first group had a good per-
formance not only on the dataset they were trained
on (DS1), but also on DS2. Noticeably, also the
classifiers of the second group performed better on
DS1.
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BASELINE DS1 DS2
P R F1 P R F1

Averages (macro) 0.28 0.50 0.36 0.27 0.50 0.35

GROUP 1 Performance on DS1
TFIDF SPTK SPTK+TFIDF

P R F1 P R F1 P R F1
Study 0.93 0.87 0.90 0.88 0.83 0.85 0.90 0.92 0.91
Expert 0.89 0.94 0.92 0.85 0.90 0.88 0.93 0.91 0.92
Average F1 (macro) 0.91 0.87 0.92

Performance on DS2
Study 0.80 0.55 0.65 0.77 0.67 0.71 0.78 0.66 0.72
Expert 0.70 0.88 0.78 0.75 0.83 0.79 0.75 0.85 0.80
Average F1 (macro) 0.72 0.75 0.76

GROUP 2 Performance on DS1
TFIDF SPTK SPTK+TFIDF

P R F1 P R F1 P R F1
Study 0.84 0.54 0.66 0.81 0.78 0.80 0.82 0.80 0.81
Expert 0.73 0.92 0.81 0.84 0.86 0.85 0.85 0.87 0.86
Average F1 (macro) 0.74 0.82 0.84

Performance on DS2
Study 0.70 0.67 0.68 0.76 0.64 0.69 0.69 0.69 0.69
Expert 0.73 0.76 0.74 0.73 0.83 0.78 0.74 0.74 0.74
Average F1 (macro) 0.71 0.73 0.72

Table 2: Results of the majority baseline and two groups of classifiers, reporting precision (P), recall (R) and F1.

6 Conclusion

The aim of this work is to show that it is possi-
ble to perform a fine-grain discrimination between
different kinds of argumentative evidence by us-
ing TKs, without the need of using sophisticated
feature vectors. The achieved classifier exploited
the ability of Tree Kernels to calculate similarities
between tree-structured sentences, considering the
similarity of their fragments.

The experiment was performed on two famous
Argument Mining datasets, which share a simi-
lar labelling system (they were referred to as DS1
and DS2). More specifically, two groups of clas-
sifiers were trained combining a SPTK related to
the GCRT representations and a linear kernel re-
lated to the TFIDF-BoW vector representations.
The first group of classifiers was trained on DS1,
while the second was trained on DS2.

A possible improvement to this approach could
be achieved by adding also n-grams to assess if
they can offer a better representation of sentences.
Moreover, it would be interesting to compare re-

sults from different kinds of tree representation to
assess whether GRCTs are the best choice for this
particular task.

One of the achievements of this study is the
successful combination of two important datasets
originally designed for other purposes.

Also, it is worth remarking that this study is
context-independent and focused on the structures
of argumentative evidences without considering
the specific context in which arguments are placed.

Finally, the main achievement of this work is
to show that TKs can differentiate between differ-
ent kinds of supporting evidences with high per-
formances, which can facilitate the discrimination
among different Argument Schemes (e.g. Argu-
ment from Expert Opinion), a crucial sub-task in
the Argumentation Mining pipeline.
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Abstract
Research on argumentation mining from text
has frequently discussed relationships to dis-
course parsing, but few empirical results are
available so far. One corpus that has been
annotated in parallel for argumentation struc-
ture and for discourse structure (RST, SDRT)
are the ‘argumentative microtexts’ (Peldszus
and Stede, 2016a). While results on perus-
ing the gold RST annotations for predicting
argumentation have been published (Peldszus
and Stede, 2016b), the step to automatic dis-
course parsing has not yet been taken. In this
paper, we run various discourse parsers (RST,
PDTB) on the corpus, compare their results to
the gold annotations (for RST) and then assess
the contribution of automatically-derived dis-
course features for argumentation parsing. Af-
ter reproducing the state-of-the-art Evidence
Graph model from Afantenos et al. (2018) for
the microtexts, we find that PDTB features can
indeed improve its performance.

1 Introduction

The argumentative structure of texts, as captured,
for instance, by schemata from Peldszus and Stede
(2013) or Stab and Gurevych (2014), is repre-
sented by tree structures that suggest a certain sim-
ilarity to accounts of discourse structure, such as in
Rhetorical Structure Theory (Mann and Thomp-
son, 1988) or Segmented Discourse Representa-
tion Theory (Asher and Lascarides, 2003). These
approaches aim at accounting for the coherence of
texts, which is clearly related – though not identi-
cal – to the structure of complex arguments. This
is not a new observation (Habernal and Gurevych,
2017), but we are not aware of many empirically-
grounded studies of the correspondences between
the two realms. A corpus that facilitates such
experiments is the ‘argumentative microtext cor-
pus’ (Peldszus and Stede, 2016a), as it offers an-
notation not only for argumentation but also for

discourse structure in terms of RST and SDRT.
While there is evidence that RST trees can “in
principle” be helpful for parsing the argumenta-
tion (based on the gold annotations; see Peldszus
and Stede, 2016b), we are not aware of experi-
ments which try to verify such effects with au-
tomatic parsers. Our work aims to bridge this
gap. We use common parsers for RST and for
Shallow Discourse Parsing (specifically the Penn
Discourse Treebank, henceforth PDTB), run them
on the microtexts, and first compare the RST out-
put to the gold annotations, in order to assess the
prospects of the idea. Having selected the most
promising parsers, we then compute a set of fea-
tures from their output and add them to a state-of-
the-art implementation of argumentation parsing
on the microtexts (Afantenos et al., 2018). The
results indicate that the parsed PDTB features do
in fact improve the accuracy of the argumentation
annotation.

Section 2 discusses related work, and Section 3
describes the corpus and the discourse parsers we
used. Initial analyses of parser results are given in
Section 4, and the experiments on predicting argu-
mentation structure are reported in Section 5. The
paper closes with some conclusions in Section 6.

2 Related work

A number of researchers have studied connec-
tions between discourse structure and argumenta-
tion. Cabrio et al. (2013) look at the link between
PDTB relations and the argumentation schemes
from Walton et al. (2008). They find, for ex-
ample, that the PDTB relation ‘expansion’ corre-
sponds to the ‘Argument by Example’, which can
be defined as when the second argument offers a
summary or a conclusion based on the first argu-
ment. Generally, the presence of connectives or
other discourse markers has often been employed
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for detecting argument components and relations
between them. Stab and Gurevych (2014) com-
pile a list of 55 discourse markers which indicate
argumentative discourse and use these as features
to detect the argumentative role in German essays.
Eckle-Kohler et al. (2015) instead look at Ger-
man news items which are annotated with the ar-
gumentative roles ‘claim’ and ‘premise’ (with var-
ious sub-categories). They found that both single
discourse markers and semantic groups of such
markers occurred in significant correlation with
claims or premises. Turning specifically to RST,
Green (2010) proposes the ArgRST annotation
scheme, which represents both argumentation and
discourse analysis in the same structure. Inter alia,
she finds parallels between the RST relation ‘evi-
dence’ and the premise and claim of an argument.

Finally, Peldszus and Stede (2016b) present a
qualitative study on the mapping from manual
RST annotations to argumentation structure and
also conduct experiments using a new feature set
which is based exclusively on the gold RST anno-
tation (of the ‘microtext’ corpus; see Section 3.1).
These features include the position of the segment
in the text, whether a segment has incoming or out-
going edges, and the type of RST relation between
segments, amongst others. They showed that es-
pecially two subtasks of argumentation structure
parsing in the microtexts (finding the central claim
and the attachment point of segments) can clearly
benefit from these features. Our project is a con-
tinuation of that study, as we essentially replicate
the model, but use automatically parsed RST trees
instead of the gold annotations, in order to assess
a “real world” scenario.

3 Data and parsers

3.1 Argumentative microtexts
Part 1 of the microtexts corpus (Peldszus and
Stede, 2016a) is a freely available1 parallel cor-
pus of 112 short texts with 576 argumentative seg-
ments. They were originally written in German
and have been professionally translated to En-
glish, preserving the segmentation where possible.
The texts have been collected in a controlled text
generation experiment using a short instruction.
All texts have been annotated with argumentation
structure according to the scheme of Peldszus and
Stede (2013), i.e., trees with one claim and sup-
port/attack relations between the segments. Fur-

1http://angcl.ling.uni-potsdam.de/resources/argmicro.html

thermore, various other layers of annotation have
been produced, including RST trees (Stede et al.,
2016). Later, Musi et al. (2018) conducted a study
comparing the RST trees to annotations of argu-
mentation schemes.

3.2 Argumentation parsing
Various researchers have used slightly different
approaches to automatically parse the argumen-
tation structure in the microtexts. Peldszus and
Stede (2015) decompose the problem into the four
subtasks of finding the central claim (cc) segment,
and for each other segment its role (ro: propo-
nent or opponent), its function (fu: support, re-
but, undercut), and the segment it attaches to (at).
They use a minimum spanning tree (MST) de-
coder on a so-called ‘evidence graph’ that com-
bines the probabilities computed for the four sub-
tasks. Stab and Gurevych (2016) achieved slightly
better results for some subtasks using Integer Lin-
ear Programming. Potash et al. (2017) use a bidi-
rectional LSTM encoder and achieve competitive
results on the microtexts, but they solve only part
of the problem (no support/attack distinction). Fi-
nally, Afantenos et al. (2018) compare ILP and
MST by training a classifier for each subtask (cc,
ro, fu, at) and use this combined distribution as in-
put to the decoders. Their best model is a replica-
tion of the evidence graph model with MST decod-
ing from Peldszus and Stede (2015) with some ad-
ditional features, including discourse connectives
for English. As this is this the model with best re-
sults for the complete problem, we will replicate it
for our experiments.

3.3 Discourse parsing: first observations
We parsed a subset of the corpus with various
parsers (Ji and Eisenstein, 2014; Feng and Hirst,
2014; Lin et al., 2014; Biran and McKeown,
2015), and after a manual analysis of the results,
chose the systems of Feng and Hirst (2014) and
Lin et al. (2014). These were used “out of the
box”, without having been trained on our data, to
produce the automatic RST- and PDTB-parses for
our study in a domain-independent way.

In a small pilot study, we compared the RST
parser output to the gold argumentation structures
for 10 texts of the corpus. We observed that
the parser sometimes produced different segmen-
tations, either combining segments, or using com-
pletely new boundaries. We also noted that the
central claims matched the most-nuclear RST seg-
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ment (for an explanation, see Section 4.1 below)
in 50% of the graphs, and that 26 RST edges –
out of 40 – corresponded to ARG edges. In these
cases the relation labels were also coherent. For
instance, the ARG relation undercut matched with
the RST relation concession and antithesis, sup-
port corresponded with RST edges explanation
and cause.

Likewise, for the 10 texts we checked the out-
put of the PDTB parser and observed that again,
the boundaries did not match in most cases. There
were very few argumentation pairs that matched to
the ARG edges, and the parser in general did not
pick up on many relations, in particular implicit
relations.

Due to the segment boundary mismatches
we observed, we decided to use common pre-
segmented text, taken from the gold-annotated
corpus, as input to the parsers for all the follow-
ing experiments. While this is in line with prac-
tices in related research, it has to be noted as a cer-
tain simplification of the “real world” scenario, as
discourse- and argumentation parsing are not quite
used out of the box anymore.

4 Quantitative analysis of parser output

In the next step, we turned to the full corpus
of 112 texts. For quantitatively comparing our
automatically-parsed texts to the gold-standard ar-
gumentative annotations of the microtexts, we first
converted the tree structures to a dependency for-
mat, adapting the techniques described in Stede
et al. (2016). These include converting multi-
nuclear RST relations such as joint or contrast to
nested binary relations by combining the sources
of the relations. In a similar vein, join nodes
in the ARG trees were converted to a joint edge
between the two relevant segments, and under-
cut edges which target a relation between two
edges were converted to target the source of the
attacked relation. The PDTB parser output in-
cluded relation predictions both within and across
our pre-determined segments; for the purposes
of this comparison we only considered the inter-
segmental relations.

4.1 Central claims

The “most nuclear” (MN) segment in the RST
structure can be identified by tracing down from
the root node to the nucleus at each level, until
reaching the lowest level (Marcu, 2000). We inter-

preted this for our RST trees by defining the MN
as the segment or group with no parent. If it is a
group, the RST tree can have more than one MN.
If the ARG CC matches any of these MNs then it
counts as match. There were a total of 67 matches,
which represents about 60% of the corpus. The
corresponding figure for gold RST and ARG from
(Peldszus and Stede, 2016b) is 85%. Considering
there are 5 segments in each text on average, we
see the automatic result as a quite promising score.

4.2 Common undirected edges

reb join sup und link exa NONE

elaboration 22 23 88 6 4 3 115
same-unit 2 0 1 0 0 0 8
joint 2 13 1 1 10 0 32
contrast 7 2 3 28 0 0 19
temporal 0 0 0 0 0 0 1
evaluation 3 0 3 0 0 0 7
summary 0 0 0 0 0 0 1
explanation 1 1 8 1 0 1 7
cause 0 3 8 1 1 0 3
topic-comment 0 0 0 0 0 0 1
background 0 9 14 0 0 0 7
attribution 0 4 0 0 0 0 3
condition 0 14 0 0 0 0 0
enablement 0 1 1 0 0 0 0
manner-means 0 1 1 0 0 0 0
comparison 0 0 2 0 0 0 0
NONE 65 10 114 23 6 4 0

Table 1: Co-occurrence matrix of the RST (rows) and
ARG (columns) relations of the matching edges in the
converted annotations

join und reb sup link exa NONE

Temporal.Synchrony 6 1 0 10 0 0 1
Expansion.Conjunction 3 0 2 0 2 0 24
Comparison.Contrast 0 21 5 0 0 0 18
Expansion.Alternative 0 0 1 0 0 0 0
Contingency.Cause 0 0 0 9 0 0 7
Expansion.Instantiation 0 0 0 0 0 1 0
Contingency.Condition 5 0 0 2 0 0 2
Temporal.Asynchronous 0 1 0 1 0 0 0
Comparison.Concession 1 0 2 0 0 0 1
NONE 61 25 71 189 10 2 0

Table 2: Co-occurrence matrix of the PDTB (rows) and
ARG (columns) relations of the matching edges in the
converted annotations

RST & ARG: Although a large amount of
edges in one annotation had no corresponding
edge in the other annotation, there are some simi-
larities. Contrast maps to undercut 28 times, and
elaboration is frequently mapped to join, support,
which seems plausible, and rebuttal which seems
less so.
PDTB & ARG: Although few edges matched
(73), this is in part due to the fact that only a to-
tal of 176 PDTB relations were identified by the
parser, in comparison to 547 relations in the ARG
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annotation. Comparison.Contrast maps to under-
cut 21 times and Temporal.Synchrony often maps
to join, both of which seem to be a suitable map-
ping.

4.3 RST gold vs. parser

Besides comparing RST parses to argumentative
structures, we were also interested in evaluating
the RST parser on the microtexts, i.e., on their gold
RST trees. To this end, we converted the gold an-
notations to a comparable format, which involved
converting the ‘span’ relations (which were not
present in the parser’s output), adjusting the seg-
ment IDs so that they were in ascending order, and
converting the more fine-grained relations to the
smaller set used by the parser (using the taxonomy
in Das and Taboada, 2014). We adapted the met-
rics to evaluate the parser output from those pro-
posed by Joty et al. (2015); our results are given in
Table 3.

Span Nuclearity Relation
F1 0.338 0.264 0.115

Table 3: RST parser evaluation, with the categories
used by Joty et al. (2015) and others.

5 Prediction experiments and results

Finally, we address the task of predicting the ARG
structure with the help of discourse parser output.
We extended the system of Afantenos et al. (2018)
and started from the feature set used by Peldszus
and Stede (2016b); our own new features, listed in
Table 4, will be referred to as ‘RST+’ and ‘PDTB’
respectively. The task now is to assess their con-
tribution in comparison to the ‘Default’ and ‘RST’
features from Peldszus and Stede (2016b) and to
the best performing lexical, syntactic, semantic
and discourse features used by Afantenos et al.
(2018). In Table 5, which shows our results, the
latter are labelled as ‘2018’.

We experimented with different combinations
of the features on two different settings of the
model: the simple relation set (support and at-
tack); and the more fine-grained full relation set
(support, example, join, link, undercut and rebut-
tal). We used the same train-test splits as in Peld-
szus and Stede (2015), which involved 10 itera-
tions of 5-fold cross validation. The results for the
full relation set were marginally better than those
for the simple relations, aside from the fu classi-

PDTB parser output
1:[Intelligence services must urgently be regulated
more tightly by parliament;] 2:[this should be clear
to everyone after the disclosures of Edward Snowden.]
3:[Granted, those concern primarily the British and
American intelligence services,]Comparison.Contrast 4:[but
the German services evidently do collaborate with them
closely.] 5:[Their tools, data and expertise have been
used to keep us under surveillance for a long time.]

RST parser output

Best performing ARG model output
[2, 1, ‘join’], [3, 1, ‘rebut’], [4, 3, ‘undercut’], [5, 1,
‘support’]

Gold ARG annotation
[2, 1, ‘support’], [3, 2, ‘undercut’], [4, 3, ‘undercut’],
[5, 4, ‘support’]

Figure 1: Parser and model output for microtext b005.
The numbers refer to the segments. RST tree created
using RSTTool (O’Donnell, 2000).

fier whose highest score, 0.750, was achieved with
the combination of all features for the simple rela-
tions. Even though the statistical analysis of the
PDTB output at first did not seem promising, the
PDTB features did improve all classifiers’ perfor-
mances. The model’s performance was best for the
majority of classifiers with the features employed
by Afantenos et al. (2018) in collaboration with
our features for both settings. In particular, our
model achieved promising improvements on the
attachment and function classifiers.

For illustration, Figure 1 shows the various
analyses for one text from the corpus.

6 Discussion and conclusion

In our study we experimented with using discourse
parser output for argumentation mining, using pre-
segmented text. We not only looked at RST fea-
tures, which have already been used in related
research, but also experimented with PDTB fea-
tures. After experimenting with various avail-
able parsers, we selected one for RST and one for
PDTB, converted their output for our corpus to a
common format, and determined correlations. In a
follow-up experiment, we used features from both
discourse parsers for predicting the argumentation
structure, based on a re-implementation of the sys-
tem of Afantenos et al. (2018). Despite the fact
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Feature description Classifier Tag
Absolute & relative no. of all children/parents and grandchil-
dren/grandparents of segment

fu, ro RST+

Relative no. of grandchildren/grandparents before & after the segment fu, ro RST+
Absolute & relative distance to parent and direction at RST+
Whether the segment is involved in a multi-nuclear relation at RST+
Whether segment has any PDTB connections to neighbouring segments cc, fu, ro, at PDTB
Count of incoming & outgoing PDTB connectives cc, fu, ro PDTB
Level one and two of the PDTB semantic relation cc, fu, ro, at PDTB
Raw text of PDTB connective cc, fu, ro, at PDTB

Table 4: Feature descriptions.

features cc ro fu at
Default features 0.722 (+/- 0.068) 0.467 (+/- 0.054) 0.224 (+/- 0.015) 0.673 (+/- 0.034)
Default, RST 0.729 (+/- 0.068) 0.600 (+/- 0.049) 0.278 (+/- 0.034) 0.680 (+/- 0.033)
Default, RST,
RST+

0.732 (+/- 0.068) 0.582 (+/- 0.049) 0.305 (+/- 0.048) 0.685 (+/- 0.026)

Default, PDTB 0.771 (+/- 0.073) 0.720 (+/- 0.048) 0.420 (+/- 0.056) 0.691 (+/- 0.030)
Default, RST,
RST+, PDTB

0.759 (+/- 0.078) 0.721 (+/- 0.045) 0.417 (+/- 0.050) 0.703 (+/- 0.031)

Default, 2018 0.854 (+/- 0.057) 0.737 (+/- 0.052) 0.444 (+/- 0.044) 0.720 (+/- 0.023)
Default, 2018,
RST, RST+,
PDTB

0.852 (+/- 0.054) 0.728 (+/- 0.056) 0.461 (+/- 0.044) 0.732 (+/- 0.027)

Table 5: Results for the full relation set with complex setting: macro-averaged F1 score, variance in parentheses,
maximum is in bold for each classifier

that the PDTB parser only identified a relatively
small amount of relations, and these did not map
very well to the ARG annotation, the PDTB fea-
tures still improved the results more than the RST
features did (compare lines 2 and 4 to line 1 in Ta-
ble 5). Combining both feature sets led to further
improvements (lines 5, 7). We thus conclude that
discourse parser features, and specifically PDTB
features, add valuable information in particular for
the classification of the function and attachment
subtasks of ARG parsing, and could therefore be
further explored and applied to other argumenta-
tive corpora.

Future work in this line of research includes
a qualitative error analysis of the parsers’ contri-
butions to ARG parsing, and an ablation test for
identifying the impact of the individual RST and
PDTB features. Furthermore, recently a second
part of the microtext corpus has been released (see
website in footnote 1), which is larger than part 1
and would also warrant similar experiments. This
would also be a test for the potential influence of

the translation step (German to English) in creat-
ing part 1.
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Abstract

We report the results of preliminary investiga-
tions into the relationship between linguistic
alignment and dialogical argumentation at the
level of discourse acts. We annotated a proof
of concept dataset with illocutions and tran-
sitions at the comment level based on Infer-
ence Anchoring Theory. We estimated linguis-
tic alignment across discourse acts and found
significant variation. Alignment features cal-
culated at the dyad level are found to be use-
ful for detecting a range of argumentative dis-
course acts.

1 Introduction

Argumentation mining remains a difficult problem
for machines. Even for humans, understanding
the substance of an argument can involve com-
plex pragmatic interpretation (Cohen, 1987). Con-
sider the reply of B in Figure 1. Absent broader
conversational context, and perhaps knowledge of
the background beliefs of B, it can be difficult to
judge whether they are asking “which religions are
correlated with increased life expectancy?” (pure
questioning) or giving their opinion that “not just
any religion is correlated with a longer life” (as-
sertive questioning). Since only the latter is an ar-
gumentative discourse unit (ADU) (Stede, 2013),
ambiguities like this therefore make it difficult to
accurately identify the structure of argumentation.

In this work we investigate using a subtle yet
robust signal to resolve such ambiguity: linguis-
tic alignment. Alignment can be calculated in an
unsupervised manner and does not require textual
understanding. It is therefore well suited to our
current technology as an extra pragmatic feature
to assist dialogical argumentation mining. Our hy-
pothesis is that, since alignment has been shown
to relate to communication strategies (Doyle and
Frank, 2016), different alignment effects will be

A: ...To be able to claim that life expectancy and health are
tied to religion you have to rule out hundreds of other factors:
diet; lifestyle; racial characteristics; genetic pre-disposition
(religion tends to run in families) etc...

B: ...Can I just have ANY religion and have a longer life?

Figure 1: An example dyad from our dataset. Without
disambiguating information it is hard to know if B’s
reply is pure or assertive questioning.

Figure 2: Posterior densities on alignment estimates for
pure and assertive questioning in our dataset, indicating
that alignment can help to disambiguate discourse acts.

observed over different argumentative discourse
acts, providing signal for their detection. For ex-
ample, Figure 2 shows our estimated posterior
densities for alignment scores over pure and as-
sertive questioning. On this basis, if B’s comment
in Figure 1 is accompanied by a significantly pos-
itive alignment score, we would be correct more
often than not classifying it as assertive question-
ing.

In this preliminary work we aim to address the
following questions:

1. Are the majority of argumentative discourse
acts associated with significantly different
alignment effects?

2. Are alignment features useful for detecting
argumentative discourse acts?
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2 Background and Related Work

Linguistic alignment is a form of communica-
tion accommodation (Giles et al., 1991) whereby
speakers adapt their word choice to match their
interlocutor (Niederhoffer and Pennebaker, 2002).
It can be calculated as an increase in the proba-
bility of using a word category having just heard
it, relative to a baseline usage rate. An exam-
ple is given in Figure 3. Note that alignment
is calculated over non-content word categories.1

While content words are clearly set by the topic
of conversation, the usage rates of particular non-
content word categories has shown to be a robust
measure of linguistic style (Pennebaker and King,
2000). Consistent with previous work, we fo-
cus on alignment over the Linguistic Inquiry and
Word Count (LIWC) categories (Pennebaker et al.,
2015), listed in Table 1.

Linguistic alignment is a robust phenomenon
found in a variety of settings. It has been used
to predict employment outcomes (Srivastava et al.,
2018), romantic matches (Ireland et al., 2011),
and performance at cooperative tasks (Fusaroli
et al., 2012; Kacewicz et al., 2014). People
have been found to align to power (Willemyns
et al., 1997; Gnisci, 2005; Danescu-Niculescu-
Mizil et al., 2011), to people they like (Bilous and
Krauss, 1988; Natale, 1975), to in-group mem-
bers (Shin and Doyle, 2018), and to people more
central in social networks (Noble and Fernandez,
2015). The variety of these contexts suggest align-
ment is ubiquitous and modulated by a complex
range of factors.

Some previous work bears on argumentation.
Binarized alignment features indicating the pres-
ence of words from LIWC categories were found
to improve the detection of disagreement in on-
line comments (Rosenthal and McKeown, 2015).
We utilize more robust calculation methods that
account for baseline usage rates which thereby
avoid mistaking similarity for alignment (Doyle
et al., 2016). Accommodation of body movements
was found to decrease in face-to-face argumen-
tative conflict where interlocutors had fundamen-
tally differing opinions (Paxton and Dale, 2013;
Duran and Fusaroli, 2017). In contrast we are con-
cerned with linguistic forms of alignment.

1Previous work has indicated the primacy of word-based
over category-based alignment (Doyle and Frank, 2016). We
leave investigation of alignment over words in argumentation
to future work.

B’s reply
A’s message has pronoun no pronoun
has pronoun 8 2
no pronoun 5 5

Figure 3: Example of linguistic alignment using a bina-
rized “by-message” calculation technique (Doyle and
Frank, 2016). B’s baseline usage rate of pronouns is
0.5, coming from the bottom row. The top row shows
the probability of B using a pronoun increases to 0.8
after seeing one in A’s message.

Category Examples Usage
Article a, the 0.076

Certainty always, never 0.016
Conjunction but, and, though 0.060
Discrepancy should, would 0.018

Negation not, never 0.018
Preposition to, in, by, from 0.137

Pronoun it, you 0.108
Quantifier few, many 0.025
Tentative maybe, perhaps 0.030
Insight think, know, consider 0.027

Causation because, effect, hence 0.021

Table 1: LIWC dictionary categories we use, examples,
and baseline production rates observed in our dataset of
∼ 1.5 million comments on news articles.

We focus on the argumentative discourse acts
of Inference Anchoring Theory (IAT) (Budzynska
and Reed, 2011; Budzynska et al., 2016). IAT is
well motivated theoretically, providing a princi-
pled way to relate dialogue to argument structure.
As noted above, an utterance that has the surface
form of a question may have different functions
in an argument - asking for a reason, stating a be-
lief, or both. The IAT framework is designed to
make these crucial distinctions, and covers a com-
prehensive range of argumentative discourse acts.

Two previous datasets are similar to ours. The
US 2016 Election Reddit corpus (Visser et al.,
2019) comes from our target genre and is reli-
ably annotated with IAT conventions. However,
the content is restricted to a single topic. Fur-
thermore, political group effects have already been
demonstrated to influence alignment (Shin and
Doyle, 2018). These considerations limit our abil-
ity to generalize using this dataset alone. The
Internet Argument Corpus (Abbott et al., 2016),
used in prior work on disagreement (Rosenthal
and McKeown, 2015), is much larger than our cur-
rent dataset, however the annotations do not cover
the principled and comprehensive set of discourse
acts that we require to support dialogical argumen-
tation mining in general.
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Figure 4: Annotating discourse acts across a message-reply pair. The blue text spans are Asserting. The red span is
Disagreeing, which always crosses the comments - in this case attacking the inference in A. If A was the reply we
would annotate the purple span as Arguing, as it offers a reason in support of the preceding assertion. In the reply,
Arguing is provided by the green span, which is an instance of Assertive Questioning. Note that we only annotate
what is in B. This pair is therefore annotated as: {Asserting, Disagreeing, Assertive Questioning, Arguing}.

3 Dataset

In this section we outline our annotation process.
So far we have 800 message-reply pairs but an-
notated by just a single annotator. In future work
we will scale up considerably with multiple an-
notators, and include Mandarin data for cross-
linguistic comparison.

3.1 Source

We scraped∼1.5M below the line comments from
an academic news website, The Conversation,2

covering all articles from its inception in 2011 to
the end of 2017. In order to maximize the gen-
eralizabilty of our conclusions we selected com-
ments covering a variety of topics. We also picked
as evenly as possible from the continuum of con-
troversiality, as measured by the proportion of
deleted comments in each topic. More contro-
versial topics are likely to see higher degrees of
polarization, which should affect alignment across
groups (Shin and Doyle, 2018). The most con-
troversial topics we included are climate change
and immigration. Among the least controversial
are agriculture and tax.

Nevertheless this data source has its own pecu-
liarities that attenuate liberal generalization. As
the site is well moderated, comments are on topic
and abusive comments are deleted, even if they
also contain argumentative content. The messages
are generally longer and less noisy than, for exam-
ple, Twitter data. Moreover, many commenters are
from research and academia. Therefore in general
we see a high quality of writing, and of argumen-
tation.

2https://theconversation.com/global

3.2 Annotation

The list of illocutions we chose to annotate are
taken from Budzynska et al. (2016): Asserting,
Ironic Asserting, (Pure/Assertive/Rhetorical)
Questioning, (Pure/Assertive/Rhetorical) Chal-
lenging, Conceding, Restating, and Non-
Argumentative (anything else). The transitions
we consider follow IAT conventions. Arguing
holds over two units, where a reason is offered
as support for some proposition. Disagreeing
occurs where an assertion conflicts with another.
Agreeing is instantiated by phrases such as “I
agree” and “Yeah.”

Annotating Rhetorical Question-
ing/Challenging is the most difficult. As
noted by Budzynska et al. (2016), there is no
common specification for Rhetorical Questioning.
We follow their definition, by which Pure and
Assertive Questioning/Challenging ask for the
speaker’s opinion/evidence, and the Assertive
and Rhetorical types communicate the speakers
own opinion. Therefore the Pure varieties do not
convey the speakers opinion, and the Rhetorical
types do not expect a reply. Annotating Rhetor-
ical Questioning/Challenging therefore requires
a more complicated pragmatic judgment of the
speaker’s intention.

Our annotation scheme departs from previous
work in that we only annotate at the comment and
not the text segment level. Multiple annotations
often apply to a single comment. An example is
given in Figure 4. The text spans of the identified
illocutions are highlighted and the transitions are
indicated with arrows for clarity, but note that we
did not annotate at that level.
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Another difference from prior work relates to
Concessions. Unlike Budzynska et al. (2016)
we do not explicitly annotate the sub-type Popu-
lar Concession - where a speaker concedes in or-
der to prepare the ground for disagreement. A po-
tential confound with the annotation scheme de-
scribed so far is ambiguous cases of Agreeing and
Disagreeing in the same comment, which could be
expected in a Popular Concession: “Yeah, I agree
that X, but [counter-argument].” Because we are
annotating at the level of the comment, we are able
to distinguish these cases by considering combina-
tions of discourse acts. A Popular Concession is
distinguished by the presence of Conceding along
with Disagreeing, optionally with Agreeing. A
Pure Concession is then distinguished by the pres-
ence of Conceding and the absence of Disagree-
ing. We therefore do not need to rule that only one
of Agreeing or Disagreeing can occur in a single
comment.

We found that Asserting (627/800), Arguing
(463/800), and Disagreeing (402/800) are by far
the most common individually, and as a combina-
tion (339/800), reflecting the argumentative nature
of our dataset. The distribution of comments over
discourse acts is Zipfian. The lowest frequency
discourse act is Ironic Asserting, which has only
12 annotations in our 800 comments.

4 Methodology

4.1 Alignment over Discourse Acts

To estimate alignment scores across discourse acts
we parameterize the message and reply genera-
tion process as a hierarchy of normal distribu-
tions, following the word-based hierarchical align-
ment model (WHAM) (Doyle and Frank, 2016).
Each message is treated as a bag of words and
word category usage is modeled as a binomial
draw. WHAM is based on the hierarchical align-
ment model (HAM) (Doyle et al., 2016), adapted
by much other previous work (Doyle and Frank,
2016; Yurovsky et al., 2016; Doyle et al., 2017).
WHAM’s principal benefit over HAM is control-
ling for message length, which was shown to
be important for accurate alignment calculation
(Doyle and Frank, 2016). Our adaptation is shown
in Figure 5. For further details of WHAM we refer
the reader to the original work.

A key problem we need to address is our inabil-
ity to aggregate counts over all messages in a con-
versation between two speakers (as in Figure 3).

Figure 5: Our adaptation of WHAM (Doyle and Frank,
2016) for estimating alignment over argumentative dis-
course acts.

This is a virtue of the original WHAM model that
provides more reliable alignment statistics. We
cannot aggregate counts over multiple message-
reply pairs since our target is the discourse acts
in individual replies. However, we are helped
somewhat by the long average comment length in
our chosen genre (µ = 82.5 words, σ = 66.5).
The lowest baseline category usage rate is approx-
imately 0.8% (µ = 3.6%, σ = 2.2%). Therefore
an average comment length gives us enough op-
portunity to see much of the effects of alignment
on the binomial draw, but is likely to systemati-
cally underestimate alignment. In future work we
will investigate this phenomenon with simulated
data, and continue to search for a solution that
makes better use of the statistics.

However, we can make more robust estimates of
the baseline rate of word category usage by con-
sidering our entire dataset (∼ 1.5 million com-
ments). We have annotations for 261 authors. The
most prolific author has 11, 327 comments. On av-
erage an author has 429 comments (σ = 1, 409).
For most authors we find multiple replies to com-
ments that do not have each word category, mak-
ing these statistics relatively reliable.

107



Figure 6: Alignment estimates over IAT discourse acts
and combinations of interest. The error bars represent
95% highest posterior density.

Bayesian posteriors for discourse act align-
ments are then estimated using Hamiltonian
Monte Carlo, implemented with PyStan (Carpen-
ter et al., 2017). We use 1, 000 iterations of No U-
Turn Sampling, with 500 warmup iterations, and
3 chains. To address research question (1) we
then compare the posterior densities of the last 500
samples from each chain, and look for significant
differences in the means.

4.2 Alignment Over Comments
In this preliminary work, we use a simpler method
for local alignment at the individual comment-
reply level that we found effective. We utilize the
author baselines calculated for each LIWC cate-
gory from the entire dataset. Then, for each mes-
sage and reply, we calculate the local change in
logit space from the baseline to the observed us-
age rate, based on the binary criterion of whether
the original message contained a word from the
category. Formally, let the LIWC categories used
in the first message be Ca. For a LIWC category
c, given the baseline logit space probability η(c)

of the replier, and the observed usage rate r of
words from category c in the reply, we calculate
the alignment score as

s(c) =

{
logit(r)− η(c) c ∈ Ca

0 otherwise

We clip these values to be in the range [−5, 5]

Figure 7: ROC AUC Performance change from bag of
GloVe vectors due to adding alignment features.

to avoid infinite values and floor effects - for ex-
ample where the reply does not contain a word
from c. This range is large enough to cover the
size of alignment effects we observed. Follow-
ing this calculation method we end up with an 11-
dimensional vector of alignments over each LIWC
category for each reply.

4.3 Detecting Argumentative Discourse Acts

To investigate our second preliminary research
question we perform logistic regression for each
annotated comment and each discourse act. Our
baseline is a bag of GloVe vectors (Pennington
et al., 2014). We use the 25-dimensional vectors
trained on 27 billion tokens from a Twitter cor-
pus. We concatenate the 11-dimensional align-
ment score vector to the bag of GloVe representa-
tion and look for an increase in performance. We
randomly split the dataset into 600 training data
points, and 200 for testing. We implement logis-
tic regression with Scikit-learn (Pedregosa et al.,
2011) and use the LBFGS solver. We set the
maximum number of iterations to 10, 000 to al-
low enough exploration time. Because this is not a
deterministic algorithm, we take the mean perfor-
mance of 20 runs over different random seeds as
the final result. As we are concerned with detec-
tion, and because the labels in each class are very
imbalanced, our evaluation metric is ROC AUC.
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Figure 8: Mean of the standard deviation of parameter
estimates as a function of dataset size. For each dataset
size we fit the model 10 times with a different random
seed.

5 Results and Discussion

All data and code to reproduce these results are
available on Github.3

5.1 Alignment and Discourse Acts
Figure 6 shows the alignment estimates over our
annotated discourse acts. Due the limitations of
our data we limit our preliminary research ques-
tion to whether these differences are significant.
We conducted pairwise t-tests for the significance
of the difference between the means of our align-
ment estimates for each discourse act. A clear
majority were significant (p >> 0.05), with only
6.4% (22/342) insignificant. We therefore answer
our first research question positively.

5.2 Detecting Discourse Acts
Figure 7 shows the change in ROC AUC of our
logistic regression model with alignment features
as compared to the baseline. In general alignment
features are useful, with the net change over all
discourse acts being positive. We therefore an-
swer our second research question in the affirma-
tive. However, arguing has taken an unexpected
step backwards that requires further explanation.
It could be a result of overfitting due to the small
size of our dataset.

6 Reliability

Due to the limitations of our study we asked the
question: how reliable are the alignment estimates
presented here? We expect noise to come from
three sources: (1) the small size of our dataset; (2)
using a non-deterministic optimization algorithm;

3https://github.com/IKMLab/argalign1

(3) only having one annotator. We are unable to
address (3) in the present work. However we in-
vestigated (1) and (2) by fitting our model 10 times
with different random seeds for different dataset
sizes (500, 600, 700, and 800 data points) and cal-
culating the standard deviation in the estimated pa-
rameter means across the 10 runs. The results are
given in Figure 8. We can see that by 800 data
points the mean of the standard deviation has re-
duced significantly to around 0.002. Thus in the
aggregate the parameters estimates appear to be
converging already - although parameters with few
data points still show larger variance. We clearly
need more data for lower frequency discourse acts.

7 Conclusion and Future Work

We have reported what are likely to be robust re-
sults showing significant difference among align-
ment effects over argumentative discourse acts in
a below the line comments genre. Comment level
alignment features were shown to be useful for
detecting argumentative discourse acts in the ag-
gregate. Our study is limited by a small dataset,
which is particularly felt for low frequency dis-
course acts, and an annotation scheme lacking
multiple annotators. Therefore our immediate fu-
ture work includes expanding our dataset and ac-
quiring multiple annotations. We also plan to
make our investigations more robust by including
a cross-linguistic comparison with Mandarin data.

Although these results are not robust enough to
draw more interesting conclusions about the ob-
served patterns, we make one suggestive observa-
tion. Alignment appears higher for discourse acts
that involve arguing. Non-argumentative, Agree-
ing, and Pure Questioning show no alignment ef-
fects. In general, Arguing and Disagreeing in-
crease alignment. There is support in the previous
literature for a view of alignment as modulated by
engagement (Niederhoffer and Pennebaker, 2002).
Our genre can be characterized as a clash of opin-
ions. If engaging in debate is modulating align-
ment it would not be surprising if alignment ef-
fects were higher over argumentative discourse
acts. We leave a thorough treatment of this ques-
tion to future work.

We note that our agreement and disagreement
estimates are at odds with previous work on body
and head movement accommodation that showed
alignment decrease with disagreement (Paxton
and Dale, 2013; Duran and Fusaroli, 2017). There
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are some considerations that may account for
this discrepancy. Previous work (Doyle and
Frank, 2016) showed that alignment was less pro-
nounced in telephone than online textual conver-
sation (Twitter). It was hypothesized that in the
textual genre there is time to review the original
message when composing a reply. There may
also be time to reflect and choose a communica-
tion strategy. In face-to-face argumentation, on
the other hand, one is forced to react in the mo-
ment, with far less time to prepare a considered
response. Our tentative results appear to support
a view alignment as modulated by communication
strategy (Fusaroli et al., 2012).

We also need to apply our methods to existing
datasets for comparison. In particular the US 2016
Election Reddit corpus (Visser et al., 2019) is al-
ready annotated with IAT discourse acts. The IAC
should also be used to further investigate the re-
lationship between alignment and disagreement,
particularly as our finding appears to contradict
previous results.

Our methods, particularly the calculation of lo-
cal alignment in replying comments, can be sharp-
ened, especially as the volume of data grows. We
also note that in our dataset repliers often directly
quote large portions of text in the original mes-
sage. This may skew alignment calculations in
these instances. We will apply a preprocessing
step in future to control for this. Another pecu-
liar feature of our genre is that comments are of-
ten directed to the broader audience. IAC is anno-
tated with this aspect, and it will be important to
investigate how this affects alignment. It may be
worthwhile investigating methods that consider a
broader context than the immediate message and
reply. We also need to consider alignment over
words as well as categories, particular as previ-
ous research showed alignment over words to be
a more primary phenomenon (Doyle and Frank,
2016).

Other phenomenon have been proposed to mod-
ulate alignment in argumentation. It has been
suggested that arguing a minority position may
be accompanied by an increased need for persua-
siveness (Pennebaker et al., 2003) (and therefore
an increased usage of “causation” words). Argu-
mentation schemes may also prove to modulate
alignment. An argument from authority, for ex-
ample as an eyewitness, could require a commu-
nicative strategy that sounds authoritative - hav-

ing the power of knowledge. Previous results
showed that power does not align but is aligned
to. That would lead to the hypothesis that such
an argument scheme should be correlated with a
smaller or negative alignment effect. Modeling
argument schemes directly may therefore help to
improve the accuracy of argumentative alignment
estimates.
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Abstract

This paper focuses on the real world applica-
tion of scientific writing and on determining
rhetorical moves, an important step in estab-
lishing the argument structure of biomedical
articles. Using the observation that the struc-
ture of scholarly writing in laboratory-based
experimental sciences closely follows labora-
tory procedures, we examine most closely the
Methods section of the texts and adopt an ap-
proach of identifying rhetorical moves that are
procedure-oriented. We also propose a verb-
centric frame semantics with an effective set
of semantic roles in order to support the analy-
sis. These components are designed to support
a computational model that extends a promis-
ing proposal of appropriate rhetorical moves
for this domain, but one which is merely de-
scriptive. Our work also contributes to the
understanding of argument-related annotation
schemes. In particular, we conduct a detailed
study with human annotators to confirm that
our selection of semantic roles is effective in
determining the underlying rhetorical structure
of existing biomedical articles in an extensive
dataset. The annotated dataset that we produce
provides the important knowledge needed for
our ultimate goal of analyzing biochemistry
articles.

1 Introduction

Scientists must routinely review the scholarly lit-
erature in their fields to keep abreast of current
advances and to retrieve information relevant to
their research. However, the volume of online sci-
entific literature is immense, and rapidly increas-
ing. In the biomedical field, the National Cen-
ter for Biotechnology Information (NCBI) devel-
oped a literature search engine, PubMed1, to ac-
cess various databases such as MEDLINE (jour-
nal citations and abstracts for biomedical litera-
ture), full-text life science e-journals, and online

1http://www.ncbi.nlm.nih.gov/pubmed

books. Between 2010 and 2018 PubMed repos-
itories increased from more than 20 million cita-
tions for biomedical literature (Lu, 2011) to more
than 28 million2. As a consequence, it has be-
come extremely challenging for biomedical sci-
entists to keep current with information in their
fields. This challenge has attracted Natural Lan-
guage Processing researchers to develop resources
and automated tools for performing various tasks
in Information Extraction and Text Mining using
online corpora of biomedical articles, and thus en-
able biomedical researchers to better manage and
exploit this volume of data (Hunter and Cohen,
2006).

The types of tasks currently handled by
Biomedical Natural Language Processing
(BioNLP) systems have generally been aimed
at extracting very specific and limited infor-
mation, for example, protein and gene names
and relations (Cohen and Demner-Fushman,
2014), and so have been able to rely on relatively
simple forms of information extraction. Although
these approaches fulfil some information needs,
more in-depth and comprehensive information
contained in biomedical texts would be highly
valuable to scientists. This type of information
can enable validating scientific claims, tracing
current research directions, reproducing scientific
procedures, and so forth. Recently, a new and
more challenging information extraction task has
been introduced as a means of obtaining this type
of information: identifying the argumentation
structure in biomedical articles (e.g., (Green,
2014, 2015)).

The essence of argumentation can be considered
as influencing others to gain their adherence to
a particular idea (Perelman and Olbrechts-Tyteca,
1973). Arguments have an explicit logical struc-
ture, for example, claims that are backed with rea-
sons, which in turn are supported by evidence,

2http://www.ncbi.nlm.nih.gov/books/NBK3827/
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leading to conclusions (Toulmin, 2003). Argu-
mentation analysis is the recognition and identi-
fication of the different forms of argumentative
structures in texts. Various studies have used re-
current patterns of text organization called rhetor-
ical moves (i.e., text segments that are rhetor-
ical and perform specific communicative goals)
to analyze argumentative organization of texts
manually (Swales, 1990) or automatically (Teufel
and Moens, 2002). Swales’ CARS model tar-
gets the Introduction section3 of scientific arti-
cles. Teufel’s interests are concentrated on rhetor-
ical moves associated with defining the research
space and suggesting the knowledge claims for
computational linguistics and chemistry articles
(Teufel, 2010). Kanoksilapatham (2003) adds to
these works by providing the first comprehensive
set of rhetorical moves for complete biochemistry
articles.

With our long-term goal being analyzing argu-
mentation in biochemistry articles, our mid-term
research goal is to provide a computational model
for Kanoksilapatham’s descriptive rhetorical move
taxonomy. Our research agenda is to design algo-
rithms which would produce a representation of
rhetorical moves in a biochemistry article and in
this paper we outline the proposed semantic cate-
gories to be used, and discuss how we were able to
guide human annotators to provide their interpre-
tations of the analysis (to later be used as a gold
standard in order to test our solutions).

Initially, our focus is on the Methods section of
the taxonomy since this provides a description of
the procedures followed in the experiment and the
analysis of the results of the experiment thereby
giving a framework for analyzing the moves in the
remainder of the article. Because the experimental
process is procedural, the moves tend to follow the
verbs describing the steps in the experimental pro-
cess. In other words, argumentation structure and
scientific method both consist of rhetorical moves
and experimental process, respectively. When a
scientist describes her/his method in the writen ar-
ticle, it contains a list of experimental steps which
are described by verbs (actions). These verbs
evoke (initiate) the rhetorical moves in the writing.
To understand the moves, we need information
about the semantic roles associated with these pro-
cedural verbs. Two well known databases contain-

3Experimental articles in the biomedical sciences are nor-
mally organized in the IMRaD style: Introduction, Methods,
Results, and Discussion.

ing semantic role information, Framenet (Baker
et al., 1998) and Verbnet (Schuler, 2005), do not
provide the information appropriate for the verbs
found in this scientific domain. Our goal is to pro-
vide FrameNet and VerbNet-like information for
the specialized domain of biochemistry.

So, the focus of this paper is to introduce the
semantic roles that we are proposing for this do-
main, some of which are the same as those nor-
mally found and some which are new and we sug-
gest are required for this domain. With these se-
mantic roles and the Methods section rhetorical
moves, we have begun annotating a corpus of the
Methods sections from biochemistry articles. The
annotation consists of the semantic roles and the
rhetorical moves associated with each verb.

The paper is structured as follows: First, an
overview of some theoretical and computational
approaches to argumentation are presented in Sec-
tion 2. Then, our proposed approach to argumen-
tation analysis is described in Section 3. Next, a
description of our annotation scheme is given in
Section 4. A description of an annotation study
conducted along with the creation of a dataset is
given in Section 5. Finally, the future work and a
conclusion of this paper is given in Section 6.

2 Related Work

2.1 Theoretical Approaches to Rhetorical
Moves and Argumentation

Swales (1990) proposed the Create-A-Research-
Space (CARS) model that uses intuition about
the argumentative structure of scientific research
articles. Swales defined rhetorical moves as
text segments that convey communicative goals.
However, despite the widespread influence of
the CARS model, some researchers observed
two problems: (i) the inconsistent assignment of
rhetorical moves to text segments because the
identification of the rhetorical moves relies on
overall text comprehension, and (ii) a lack of
empirical validation of moves in linguistic terms
(Kanoksilapatham, 2003).

To overcome these problems, Kanoksilapatham
(2003) advanced Swales’ approach to move anal-
ysis by developing a framework that combines
his original CARS model with the use of Biber’s
(1991) multidimensional analysis to enrich the
model with additional information about linguistic
characteristics. Although Kanoksilapatham pro-
vides an extension to the Swales move analysis
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study and attempted a validation of these moves
in biochemistry articles, she only provides a de-
scriptive analysis about rhetorical moves without
defining an explicit method for analyzing and rec-
ognizing these moves in texts.

2.2 Annotating Rhetorical Moves and
Argumentation Schemes

Argumentative Zoning (AZ) was developed by
Teufel and Moens (1999) to categorize sentences
based on their contextual information (e.g., deter-
mining authorship of knowledge claims). The AZ
scheme classifies sentences into seven categories
including the ones from the CARS model (Swales,
1990). The data set consisted of 48 computational
linguistic papers. Three annotators were involved
in the study to extract sentences that fell into these
seven categories. The results showed kappa scores
of 83% and 82% between the annotators in the first
and second schemes, respectively. The AZ scheme
was later modified to suit the characteristics of bi-
ology articles (Mizuta et al., 2006). Furthermore,
Teufel et al. (2009) and Teufel (2010) proposed a
revised version of AZ to include more categories
for annotating scientific articles such as chemistry.
This revised version was planned to model all ex-
perimental sciences, which is challenging, since
the style of scientific writing varies across disci-
plines. Most recently, Teufel (2015) has proposed
a modified version of AZ to recognize rhetorical
moves in scientific articles.

Liakata et al. (2012) developed an annotation
scheme called Core Scientific Concepts (CoreSC)
to classify sentences into scientific categories
(e.g., “related to author’s other work”). The au-
thors use Machine Learning classifiers (i.e., Con-
ditional Random Fields and Support Vector Ma-
chines) to automatically classify sentences into
the CoreSC categories. The data set consisted of
265 biochemistry and chemistry articles. The au-
thors were only able to achieve an accuracy around
50% in categorizing sentences in the appropriate
CoreSC scientific categories indicating that this is
a very difficult task.

Overall, these different approaches based on ar-
gumentation theories for analyzing and recogniz-
ing argumentative elements, including move anal-
ysis ((Kanoksilapatham, 2003) (Swales, 1990)),
argumentative zoning (Teufel et al., 1999), and
epistemic topoi (Gladkova, 2011), lacked a formal
knowledge representation which could be used

computationally for in-depth argumentation anal-
ysis and mining.

Another problem in identifying argumentative
elements is that relatively few biomedical related
corpora annotated with argumentation structures
currently exist for use in training or evaluating Ma-
chine Learning classifiers.4 This has encouraged
researchers to begin developing annotated corpora
for use by the Computational Argumentation com-
munity ((Green, 2014, 2015), in particular).

Green (2014) proposed a plan for creating an
annotated corpus of biomedical genetics research
articles. Importantly, in justifying the need for
such a corpus, Green strongly argued for do-
main knowledge as a requisite of argumentation
recognition in the experimental sciences. Green
(2015) specified a set of argumentation schemes
for scientific claims in genetics research articles.
The author used a corpus of unannotated genetics
research articles, and identified the components
(e.g., premises, conclusions) of an argument as
well as its type of scheme. Overall, the author’s
ultimate goal for this initial study was to develop
annotation guidelines for creating corpora for ar-
gumentation mining research.

None of these previous approaches to auto-
mated argumentation analysis and mining pro-
vided a formal knowledge representation that
could be used in detecting and recognizing ar-
gumentative elements. We believe that develop-
ing a formal representational framework based on
verb semantics in procedural scientific discourse
will enable a more in-depth analysis of argumen-
tative elements in a computationally feasible man-
ner. We intend to provide such knowledge for the
biochemistry domain to achieve this goal. This
paper discusses the annotation of a corpus of bio-
chemistry text, the first step in this longer term en-
terprise.

3 Procedurally Rhetorical Verb-centric
Frame Semantics

In this research we will work on the biochemistry
domain to develop a formal knowledge represen-
tation, procedurally rhetorical verb-centric frame
semantics, that can be used for in-depth argumen-

4We note, however, increasing attention to this concern,
with the design of such corpora as The Internet Argument
Corpus (IAC) for research in political debates on internet
forums (Walker et al., 2012) and the Dr. Inventor Multi-
Layer Scientific Corpus (DRI) for computer graphics articles
(Lauscher et al., 2018).
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tation analysis, is computationally feasible to im-
plement, and will enable argumentation mining
of more-detailed scientific knowledge than is cur-
rently available. This will be an important step to-
wards providing researchers in Computational Ar-
gumentation working in domains with similar dis-
course structure with a means of using and evalu-
ating the metrics we will develop. To the best of
our knowledge, no research has proposed or incor-
porated the idea of a semantic frame based on verb
analysis to assist in the analysis of argumentation
in biochemistry articles.

We have introduced various methods for de-
tecting rhetorical moves in Section 2. We hy-
pothesize that recognizing and detecting rhetori-
cal moves would provide additional information
to our framework of argumentation analysis. We
also hypothesize that the Methods sections in bio-
chemistry articles contain rhetorical moves which
can be correlated with the author’s experimental
procedures. These moves can be used to deter-
mine salient information about the elements of the
article’s argumentative structure (e.g., premises)
and can contribute to the overall understanding
of the author’s scientific claims. A key aspect
of our hypothesis is that development of a frame-
based knowledge representation can be based on
the semantics of the verbs associated with these
procedures. This representation can provide de-
tailed knowledge for understanding these rhetori-
cal moves, which will in turn facilitate analysis of
argumentation structure. In other words, we pro-
pose that a procedurally rhetorical verb-centric
frame semantics can be used to obtain a deeper
analysis of sentence meaning than is currently the
case with simple methods of Information Extrac-
tion (e.g., shallow syntactic pattern) and in a com-
putationally feasible manner. Hence our focus on
this critical section as a starting point for confirm-
ing the value of our chosen model for rhetorical
moves and semantic roles.

Scientific argument5 is defined as a process that
scientists follow by using certain procedures to
obtain empirical data which will either support
or defeat their claims, hence leading to the in-
tended conclusion. The strength of a scientific ar-
gument depends on its reproducibility and consis-
tency. For a scientific argument to be strong, a
scientist should identify and explain all the proce-

5http://www.ces.fau.edu/nasa/introduction/scientific-
inquiry/why-do-scientists-argue-and-challenge-each-others-
results.php

dures in their experiment, i.e., reproducibility, so
that another researcher who follows the same pro-
cedures will reach the same conclusion, i.e., con-
sistency. Thus, for a well-constructed scientific ar-
ticle, a scientist should expect the same conclusion
if she follows the same procedures in the same se-
quence as described in the Methods section.

Scientific writing in the biochemistry domain
has certain characteristics that made it ideal for our
purposes. In this domain, experimental procedures
describe the sequence of actions the biochemist
performs to carry out an experiment to derive sci-
entific conclusions, to demonstrate science exper-
iments as can be seen in the experimental man-
uals (e.g., (Boyer, 2012; Sambrook and Russell,
2001)). Verbs play an essential role as indicators
of these experimental procedures. These proce-
dures can be viewed as corresponding to the el-
ements of the scientific argumentation structure.
For example, when examining a biological sub-
stance (e.g., a certain type of bacteria) in order
to prove a hypothesis (e.g., this bacteria is corre-
lated with a certain disease) the biochemist would
perform a sequence of certain procedures to ar-
rive at a conclusion. Essentially, biochemists cre-
ate an argumentation framework through the sci-
entific methodology they follow—how they per-
form their experiments is how they argue. We can
observe that this genre— biochemistry articles—is
procedure-oriented since the scientific procedures
that are described are parallel to the scientific ar-
gumentation in the text. For example:

Example 1 “Beads with bound proteins were
washed six times (for 10 min under rotation at 4
C) with pulldown buffer and proteins harvested in
SDS-sample buffer, separated by SDS-PAGE, and
analyzed by autoradiography.” (Ester and Uetz,
2008).

In this example, the verbs “washed”, “har-
vested”, “separated”, and “analyzed” are used to
illustrate the procedure steps in sequential order.
Such an experiment can be reproduced if one fol-
lows these steps.

Fillmore (1976) introduced the notion of frame
semantics as a theory of meaning. A seman-
tic frame is defined as ‘any coherent individuat-
able perception, memory, experience, action or
object’ by Fillmore (1977), in other words, co-
herently structured concepts that are related to
each other to represent a complete knowledge of
world events or experiences. For example, to un-
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derstand the word “buy”, one would access the
knowledge contained in the commercial transac-
tion frame which includes words such as the per-
son who buys the goods (buyer), the goods that are
being sold (goods), the person who sells the goods
(seller), and the currency that the buyer and seller
agree on (money).

Following Fillmore’s theory of frame seman-
tics, FrameNet (Baker et al., 1998) was developed
to create an online lexical resource for English.
This framework includes more than 170,000 man-
ually annotated sentences and 10,000 words. The
computational linguistics community has been at-
tracted to the concept of frame semantics and has
developed computational resources using this con-
cept, such as VerbNet (Schuler, 2005), an on-line
verb lexicon for English and PropBank (Palmer
et al., 2005), an annotated corpus with basic se-
mantic propositions.

Following the notion of frame semantics, we
propose to build a knowledge representation
framework to analyze verbs in a procedure-
oriented genre. Our concept of procedurally
rhetorical verb-centric frame semantics is in-
tended to address this lack of a formal framework
by developing a computationally feasible knowl-
edge representation that will enable argumentation
analysis. The knowledge contained in the frame
semantics will facilitate the extraction of elements
of arguments, i.e., argumentation mining. To reit-
erate, our hypothesis is that procedurally rhetorical
verb-centric frame semantics can provide a knowl-
edge representation framework for analyzing and
representing the meanings of the verbs used in bio-
chemistry articles. In turn, these frames will facili-
tate the identification of argumentation structure in
the discourse describing experimental procedures
by highlighting the important steps in the exper-
iment which are used to argue for the author’s
claims.

4 Annotation Scheme for Experimental
Events

We have developed a new annotation scheme for
identifying the structured representation of knowl-
edge in a set of sentences describing the experi-
mental procedures in the Method sections of bio-
chemical articles. Several researchers have devel-
oped other forms of schemes (e.g., “bio-events”
(Thompson et al., 2008)) to extract biological in-
formation (e.g., gene regulation). However, a bio-

event is different from our definition of an exper-
imental event. On the one hand, a bio-event is
concerned with detection of bio-molecular events
within the biomedical literature, such as the iden-
tification of events that are related to given pro-
teins (Thompson et al., 2008). In our case, an ex-
perimental event is concerned with processes and
procedures that are used to investigate biological
events. The experimental event is also concerned
with the recognition of the biochemist’s reasoning
of standard biochemical procedures such as using
certain instruments or specific biological materi-
als. Our annotation scheme consists of two tiers
of information. A rhetorical move is on the sen-
tence or clause level while semantic role is on the
word or phrase level. The following subsections
describe these two tiers of information.

Annotators are allowed to select the text span
for labeling units (e.g., rhetorical moves and se-
mantic roles) with some constraints as follows:

1. For a sentence or clause to be qualified as a
rhetorical move, it must include a main verb
and stand on its own. For example:

Example 2 “Beads with bound proteins
were washed six times (for 10 min under ro-
tation at 4◦C) with pulldown buffer ...” (Ester
and Uetz, 2008).

2. A sentence or clause that is qualified as a
rhetorical move, it should have at least one
or more semantic roles. Given the previous
example, one could label the sentence as fol-
lows: - “Beads with bound proteins” as a
theme - “were washed” as a predicate, - “six
times”, “for 10 min”, “under rotation”, and
“at 4◦C” as protocol-details (repetition, time,
condition, and temperature respectively).

4.1 Annotation for Rhetorical Moves
We have developed a set of rhetorical moves
following Kanoksilapatham’s (2003; 2005) work.
That is, we have adapted and modified some
of Kanoksilapatham’s moves, as well as adding
new more fine-grained moves to our annotation
scheme. In combination, there are four major
rhetorical moves concerned with the Methods sec-
tion in biochemistry articles as can be seen in Ta-
ble 1.

The clause given in Example 2, which is part
of a complete sentence that contains several verbs,
should be labeled as “Description-of-method”.
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Move type Definition
Description-of-
method

Concerned with sentences that describe experimental events.

Appeal-to-
authority

Concerned with sentences that discuss the use of well-established meth-
ods.

Background in-
formation

Concerned with all background information for the experimental events
such as “method justification, comment, or observation, exclusion of
data, approval of use of human tissue” as defined by Kanoksilapatham
(2003).

Source-of-
materials

Concerned with the use of certain biological materials in the experimen-
tal events.

Table 1: Rhetorical Moves in the Method Sections of Biochemistry Articles

Semantic role Definition
Agent Generally a human or an animate subject.
Patient Participants that have undergone a process.
Predicate A word that initiates the frame.
Theme Participants in a location or undergoing a change of location.
Goal Identifies a thing toward which an action is directed or a place to which something

moves.
Factitive A referent that results from the action or state identified by a verb.
Location The physical place where the experiments took place.
Protocol-Detail:

Time Identifies the time or a duration of an experimental process.
Temperature Identifies the temperature of an experimental process.
Condition Identifies the condition of how an experimental process is performed.
Repetition Identifies the number of times an experimental process is repeated.
Buffer Identifies the buffer that was used in an experimental process.
Cofactor Identifies the cofactor that was used in an experimental process.

Instrument:
Change Describes objects (or forces) that come in contact with an object and cause some

change.
Measure Describes an object or protocol that can measure another object(s).
Observe Describes an object which can be used to observe another object(s).
Maintain Describes an object or protocol which can be used to maintain the state of ob-

ject(s).
Catalyst Describes an object that can be used as a catalytic “facilitator” for an experimental

event to occur.
Reference Refers to a method or protocol that is being used.
Mathematical Describes a mathematical or computational instrument

Table 2: Semantic Roles in the Annotation Scheme of our Experimental Event
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4.2 Annotation for Semantic Roles
As described earlier, our experimental event
scheme was inspired by the annotation scheme for
bio-events (Thompson et al., 2011). We based
our experimental event scheme for verb arguments
on the inventory of semantic roles in VerbNet
(Schuler, 2005) and modified and added new se-
mantic roles to define our scheme. Our experimen-
tal event scheme includes: Theme, Patient, Predi-
cate, Agent, Location, and Goal. The complete set
of semantic roles and their definitions in our ex-
perimental event scheme is presented in Table 2.

Working with a biochemist, we have extended
the VerbNet definition of the semantic role Instru-
ment from simply “an object or force that comes in
contact with an object and causes some change in
them” (Schuler, 2005) to include a variety of sub-
categories corresponding to various types of bio-
logical and man-made instruments used in a bio-
chemistry laboratory. We have also added Pro-
tocol detail as a set of semantic roles that iden-
tify certain types of information about experimen-
tal processes such as time and temperature.

5 Annotation

5.1 Data Set
We have created a data set consisting of 105
text files. These files include only the Methods
sections from biochemistry journal articles which
were randomly selected from PubMed Central. To
prepare the data set for our task, all files were con-
verted to plain text files that included one sentence
per line and all figures and tables were omitted.
We have used this data set for our initial text anal-
ysis that we described in Section 3. We also ex-
tended our data set to include 3499 articles be-
tween the years 2013 to 2015 from the top nine
journals in biochemistry (Cell, Genome Research,
Molecular Cell, Molecular Biology and Evolution,
Molecular Aspects of Medicine, Nature Medicine,
Nature Methods, Nature Structural & Molecular
Biology, and Nature Chemical Biology).

5.2 Annotation Guidelines
We have created guidelines for annotating the
Methods section in biochemistry articles. The
guidelines include a description and the necessary
background information of the task. The guide-
lines also include examples for each type of se-
mantic role and their occurrence in the text. A list
of questions supplements the guidelines to help

annotators classify each sentence into its proper
category. This task is done for semantic role label-
ing at the word level and rhetorical move labeling
at the sentence level. We further supplemented the
guidelines with a list of common co-factors and
buffers that are normally used in the experimental
procedures. Essentially, each annotator is asked to
read the guidelines and if at any point she/he has
a question or needs clarification, we can illustrate
by providing more examples. We set up a meeting
with the annotators either by Skype or in person
to answer their questions. In fact, the guidelines
have been revised and updated several times to re-
flect the annotators’ feedback.

Our plan is to hire experts in the biomedical do-
main to label the Methods section in all of the arti-
cles in our dataset using our annotation scheme.
Due to resource limitations, only 5% of the to-
tal number of articles have been annotated by two
annotators, to date. We have hired ten annota-
tors with a variety of backgrounds (Biochemistry,
Bioinformatics, Biology) and different academic
levels ranging from Bachelor to PhD degree. The
annotators have engaged in various training ses-
sions that were led by the authors. We have pro-
vided different resources that can help and sup-
port the annotators in this project. These resources
include frequent meetings, the annotation guide-
lines, a list of questions and answers about the
annotation, our biochemistry expert (a PhD stu-
dent working with us), and the use of web-based
software called Slack6 which allows annotators to
post questions, comments, or illustrate an example
from the data set. We have also created a demo
video7 that shows annotators step by step how to
use the GATE tool8 and how to use the schema to
label texts. Annotators are asked to use the GATE
tool as an interface which gives them access to our
developed schema for the semantic roles.

Each article is labeled by two annotators. The
labeling is done on a verb basis rather than a full-
sentence basis. In other words, each sentence with
more than one verb is divided into smaller text
spans (Annotation Units (AUs)), which are com-
posed of a verb and the text containing its semantic
roles. The annotators identity the verb in that AU
and label all associated semantic roles for that verb

6https://slack.com/
7The demo video and guidelines are available at

https://uwaterloo.ca/scholar/mallihee/links/gate-annotation-
demo-and-annotation-guidelines

8https://gate.ac.uk/
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Configuration Kappa score
Original annotation 61.3%
Theme combined with patient
and all instrument roles
combined

68.9%

Protocol details combined 71.6%
Adjudicated 93.6%

Table 3: Inter annotator agreement κ-score for seman-
tic role labeling

within that AU. The annotators decide which con-
stituent is a semantic role. Then, annotators label
the entire AU with appropriate rhetorical moves.
Each annotation is stored in an XML file. Figure
1 shows an example of some sentences annotated
for both rhetorical moves and semantic roles.

5.3 Inter-annotator Agreement

Identification of semantic roles: We measured
the inter-annotator agreement for semantic role la-
beling between the two annotations of the same
article using the κ-score (Cohen, 1960). To have
a matching label, both the semantic role category
and the text span must be the same. Then, we mea-
sured the κ-score after the adjudication step which
was done by one of the authors. The adjudication
step’s main goal is to resolve any disagreement in
annotations (Palmer et al., 2005). We have also
measured the kappa score for different configura-
tions of the data set as shown in Table 3. “Orig-
inal annotation” is the annotation that was pro-
vided by the annotators. “Theme combined with
patient and all instrument roles combined” indi-
cates theme and patient were combined as one role
and all instrument subcategories were considered
as one. “Protocol detail combined” indicates that
in addition to the previous merging of semantic
roles, all protocol detail subcategories were com-
bined as one role. “Adjudicated” means that the
disagreements in the original annotations were re-
solved and any missing semantic roles were added.
All of the κ-scores in Table 3 are rated substantial
(Landis and Koch, 1977; McHugh, 2012). The re-
sults are very promising.

Identification of rhetorical moves: We also
measured the inter-annotator agreement for rhetor-
ical move identification between the two annota-
tions of each article using the κ-score. Here again,
the rhetorical move and text span must be the same
to be considered a match. As seen in Table 4, we

Configuration Kappa score
Original 42.0%
Adjudicated 98.2%

Table 4: Inter annotator agreement κ-score for rhetori-
cal move identification

have measured the kappa-score for two configu-
rations. “Original” is the annotation provided by
the annotators, while “Adjudicated” means that the
disagreements in the original annotations were re-
solved. The Adjudicated step was done by one of
the authors. The result, shown in Table 4, shows a
moderate to almost perfect agreement (Landis and
Koch, 1977; McHugh, 2012). We have calculated
the confusion matrix for the original annotation of
rhetorical moves. During our adjudication step,
we noticed some commonly mislabeled instances
by some annotators. For example:

Example 3 “The hierarchical cluster analyses
were performed in MATLAB (Release 2012a), and
the bar graphs were produced in Microsoft Excel
2010.” (Davies et al., 2015).

This sentence should be labeled “Description-
of-method” since it clearly describes steps of the
authors’ method, i.e., using tools to perform anal-
yses and produce graphs. However, one annotator
mislabeled it as “Appeal-to-authority”.

Example 4 “Constructs comprising new opsin
sequences cloned in pMT4 were transiently trans-
fected into Neuro-2a cells with GeneJuice reagent
(Novagen), according to the manufacturer’s in-
structions (for further information, see Supple-
mental Material).” (Davies et al., 2015).

This sentence was labeled incorrectly as
“Description-of-method” whereas it should be la-
beled as “Appeal-to-authority” since it refers to an
“established” method. We have concluded that our
annotation guidelines need to be updated to bet-
ter aid our annotators to properly select the right
rhetorical move for each candidate AU.

6 Conclusion and Future Work

In this paper, we have presented the semantic roles
that we have suggested to be necessary for this sci-
entific domain and which will be used in our anno-
tation scheme. This Experimental Event Scheme,
which is based on the proposed semantic roles,
is the first step towards developing an automated
rhetorical move analysis. We have also presented
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Figure 1: Snippet extracted from one article (Deng et al., 2015) of our annotated dataset showing the labelling of
the rhetorical moves and semantic roles using the GATE tool.

Figure 2: Confusion matrix for rhetorical move identi-
fication.

the most common rhetorical moves based on our
observations of biochemistry procedures. We also
have described our annotation study along with
the dataset used. Ultimately, we aim to develop
a framework to analyze argumentation structure
in biochemistry procedures using the rhetorical
moves.

We note that while there is substantial agree-
ment among annotators in our results with re-
spect to semantic roles, the agreement regarding
rhetorical moves is more modest. One reason why
this might be the case is the fact that the anno-

tated dataset to date is relatively small and anno-
tators might actually have more inherent insight
into recognizing the differences between rhetori-
cal moves. Since these moves have spans which
range from clauses to full sentences, whereas se-
mantic roles are confined to at most a few words,
the guidelines for annotation that were developed
focused more on this simpler case. We antici-
pate expanding these guidelines in order to im-
prove inter-annotator agreement regarding rhetor-
ical moves in the future.

As future work, in parallel with annotating the
complete data set, we will develop a computa-
tional model to label the rhetorical moves for this
domain. As well, from our experience with an-
notating the biochemistry articles with our ex-
perts, we recognized that not all of the information
needed to interpret the move structure is available
in the text. What is needed is an ontology that
captures the knowledge that a working biochemist
would have regarding biochemistry experimental
procedures, especially the sequence of events that
are normally undertaken in these procedures. We
have begun building such an ontology and future
development will involve some automation.

Acknowledgments This research was funded
by Al Baha University and the University of Wa-
terloo. We thank our annotators for their dedica-
tion to the annotation effort.

121



References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FramNnet project. In Proceed-
ings of the 17th international conference on Compu-
tational linguistics-Volume 1, pages 86–90. Associ-
ation for Computational Linguistics.

Douglas Biber. 1991. Variation across speech and
writing. Cambridge University Press.

Rodney F. Boyer. 2012. Biochemistry Laboratory:
Modern Theory and Techniques. Prentice Hall.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological
measurement, 20(1):37–46.

Kevin Bretonnel Cohen and Dina Demner-Fushman.
2014. Biomedical natural language processing, vol-
ume 11. John Benjamins Publishing Company.

Wayne IL Davies, T Katherine Tamai, Lei Zheng,
Josephine K Fu, Jason Rihel, Russell G Foster,
David Whitmore, and Mark W Hankins. 2015. An
extended family of novel vertebrate photopigments
is widely expressed and displays a diversity of func-
tion. Genome research, 25(11):1666–1679.

Sarah K Deng, Yi Yin, Thomas D Petes, and Lorraine S
Symington. 2015. Mre11-sae2 and rpa collaborate
to prevent palindromic gene amplification. Molecu-
lar cell, 60(3):500–508.

Claudia Ester and Peter Uetz. 2008. The ff domains
of yeast u1 snrnp protein prp40 mediate interactions
with luc7 and snu71. BMC biochemistry, 9(1):29.

Charles J Fillmore. 1976. Frame semantics and the na-
ture of language. Annals of the New York Academy
of Sciences, 280(1):20–32.

Charles J Fillmore. 1977. Topics in lexical semantics.
Current issues in linguistic theory, 76:138.

Olga Gladkova. 2011. Identification of epistemic topoi
in a corpus of biomedical research articles. Ph.D.
thesis, University of Waterloo.

Nancy Green. 2014. Towards creation of a corpus for
argumentation mining the biomedical genetics re-
search literature. In Proceedings of the first work-
shop on argumentation mining, pages 11–18.

Nancy Green. 2015. Identifying argumentation
schemes in genetics research articles. In Proceed-
ings of the 2nd Workshop on Argumentation Mining,
pages 12–21.

Lawrence Hunter and K. Bretonnel Cohen. 2006.
Biomedical language processing: What’s beyond
pubmed? Molecular Cell, 21(5):589–594.

Budsaba Kanoksilapatham. 2003. A corpus-based
investigation of scientific research articles: Link-
ing move analysis with multidimensional analysis.
Ph.D. thesis, Georgetown University.

Budsaba Kanoksilapatham. 2005. Rhetorical structure
of biochemistry research articles. English for Spe-
cific Purposes, 24(3):269–292.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Anne Lauscher, Goran Glavaš, and Simone Paolo
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Abstract

Rhetorical elements from scientific publica-
tions provide a more structured view of the
document and allow algorithms to focus on
particular parts of the text. We surveyed the
literature for previously proposed schemes for
rhetorical elements and present an overview of
its current state of the art. We also searched
for available tools using these schemes and ap-
plied four tools for our particular task of rank-
ing biomedical abstracts based on text similar-
ity. Comparison of the tools with two strong
baselines shows that the predictions provided
by the ArguminSci tool can support our use
case of mining alternative methods for animal
experiments.

1 Introduction

We aim to mine alternative methods to animal ex-
periments from the biomedical literature. These
are methods that address any of the so-called 3R
principles of replacement (no animals at all or use
of invertebrates over vertebrates), reduce (use of
less animals), or refinement (cause less harm to
animals) (Gruber and Hartung, 2004; Doke and
Dhawale, 2015). For such complex natural lan-
guage processing (NLP) applications, it is neces-
sary to rely on appropriate tools to precisely un-
derstand the text and better find the potential rele-
vant documents. The rhetorical elements, such as
zones or particular entities, can support NLP algo-
rithms by focusing on the relevant elements of the
text (Mann and Thompson, 1987).

Given a certain document that describes an an-
imal experiment for a certain research goal, here-
after called input document, we would like to find
potential publications, hereafter called candidate
documents, that describe an alternative method for
the same research goal. Thus, some of the scien-
tific elements should be similar between input and

candidate documents, e.g. research goals and out-
comes, while some others should be different, e.g.
methods. Finding an alternative method to animal
experiment requires two tasks: (a) performing a
text similarity task with respect to some aspects
of the publication, and (b) precisely understanding
the proposed method with respect to the 3R prin-
ciples. Therefore, the extraction of rhetorical el-
ements has the potential to boost performance for
these tasks.

Previous works have proposed many schemes
for rhetorical elements in scientific publication, as
reviewed in Webber et al. (2012). In a more re-
cent survey, Nasar et al. (2018) present a good
overview on both metadata and schemes for sci-
entific articles. On the one hand, many of these
schemes are not supported by an annotated corpus
for training suitable information extraction tools.
On the other hand, some tools based on these
schemes are readily available for use.

We surveyed published schemes for rhetorical
elements, whether focused on the biomedical do-
main or not, and we present a short overview on
these. For those schemes for which we could find
available tools, the latter was used to process a col-
lection of 562 biomedical abstracts. We performed
a comparison of the output (rhetorical elements)
from the tools in the scope of a text similarity task
on a manually annotated dataset. In this work, we
limited our evaluation for text similarity but did
not address whether the proposed methods com-
ply with the 3R principles.

In summary, the contributions of this work
are the following: (a) a short survey on exist-
ing schemes and corpora for rhetorical elements
in scientific publications; (b) the identification of
the schemes for which available tools are read-
ily available for use; and (c) the evaluation of the
available tools on a biomedical use case for text
similarity. The next section presents a survey on
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the available schemes, followed by the methodol-
ogy that we propose to compare the tools in the
scope of text similarity. We present the results in
Section 4 and our discussion in Section 5.

2 Schemes for Rhetorical Elements

We classified the schemes according to the anno-
tation level they address, either on the sentence,
entity or relation-level. We present a summary of
all schemes that we found, but give a more de-
tailed description for (selected) schemes for which
an annotated corpus is available (cf. Table 1).

2.1 Sentence-level Schemes
Many schemes model scientific elements on the
level of sentences or phrases, i.e., for document
zoning. It consists of splitting the publications
(whether abstracts or full texts) on zones ac-
cording to its scientific content, e.g. introduc-
tion, methods, results. Shimbo et al. (2003) pro-
posed five categories and used structured abstracts
from Medline while Hirohata et al. (2008) sug-
gested four zoning categories. Further, Mullen
et al. (2005) proposed a schema in which labels
are grouped in three groups. Agarwal and Yu
(2009) defined four categories (IMRAD schema)
and manually annotated 148 articles, which was
also used by Varga et al. (2012) for the annotation
of more than 1,000 biomedical articles. Ruch et al.
(2007) also annotated and tried machine learning
in biomedical abstracts. However, none of the
above data seems to be available for use, but we
found many schemes with available corpora:

AZ (Teufel and Moens, 2002). The Argumen-
tative Zoning (AZ) schema was first proposed by
Teufel and Moens (2002) and an annotated cor-
pus is freely available for download1. The schema
is composed of seven rhetorical categories and
the corresponding corpus contains 80 articles on
computational linguistics. Teufel et al. (2009)
extended the schema to 11 categories (the AZ-
II schema), applied it to chemistry papers, and
later compared it to the CoreSC schema (Liakata
et al., 2010).2 Later, Kovačević et al. (2012)
annotated 110 articles in computational linguis-
tics with a modified version of the AZ labels.
Mizuta et al. (2006) also adapted the AZ schema
to biomedicine by annotating 20 full-text articles.

1https://www.cl.cam.ac.uk/˜sht25/AZ_
corpus.html

2However, the AZ-II corpus was not found.

Guo et al. (2010) compared three zoning schemes
in abstracts, including a reduced version of the AZ
schema composed of seven categories, and anno-
tated 1,000 abstracts with these schemes.3

CoreSC (Liakata et al., 2010). This schema
consists of three layers of labels and the corre-
sponding ART corpus4 is composed of 225 full
texts. The corpus and schema were used in Guo
et al. (2010) (just the first layer) and in Liakata
et al. (2012a) for two life sciences applications,
while Liakata et al. (2012b) compared it to a
schema for biomedical events and developed the
the SAPIENTA software5.

Dr. Inventor (Ronzano and Saggion, 2015;
Fisas et al., 2015). The Dr. Inventor Framework
proposes five categories and annotated 40 Com-
puter Graphics papers, the so-called Dr. Inven-
tor Rhetorically Annotated Corpus. Later, they
also annotated another layer for citation purposes
(Fisas et al., 2016). An extension of this schema
with argumentative components and relations was
recently published (Lauscher et al., 2018b), along
with a tool for the prediction of the scientific ele-
ments (Lauscher et al., 2018a).

MAZEA (Dayrell et al., 2012). This schema
considers six categories and the corpus was an-
notated for 645 abstracts from Physical Sciences
and Engineering and Life and Health Sciences.6 A
Web application is available for tagging abstracts.

PIBOSO (Kim et al., 2011). It was designed for
the clinical domain and proposes six categories of
a modified version of the PICO criteria. It was
used for the ALTA-NICTA shared task7 and recent
works using this corpus include Hassanzadeh et al.
(2014) and Jin and Szolovits (2018). The latter re-
lies on deep learning methods and the implemen-
tation is readily available.

PubMed RCT (Dernoncourt and Lee, 2017).
It is a collection that includes two corpora of
20,000 and 200,000 medical abstracts annotated

3However, the URL informed in a later publication (Guo
et al., 2013) no longer exists.

4https://www.aber.ac.uk/en/cs/
research/cb/projects/art/art-corpus/

5http://www.sapientaproject.com/
software

6http://www.nilc.icmc.usp.br/
mazea-web/downloads.php

7https://www.kaggle.com/c/
alta-nicta-challenge2
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Tools Categories Corpora Topic

Se
nt

en
ce

/P
hr

as
e

AZ AIM, TEXTUAL, OWN, BACK-
GROUND, CONTRAST, BASIC,
OTHER

80 (Teufel and Moens,
2002) and 20 (Mizuta
et al., 2006)

CL,
bio

CoreSC [Level 1] Hypothesis, Motivation,
Background, Goal, Object, Method,
Experiment, Model, Observation, Re-
sult, Conclusion

225 (Liakata et al., 2010) chem

Dr. Inventor Approach, Challenge, Background,
Outcomes, Future Work

40 (Ronzano and Sag-
gion, 2015)

CG

MAZEA background, gap, purpose, method, re-
sult, conclusion

645 abstracts (Dayrell
et al., 2012)

phy,
eng,
LS

PIBOSO Population, Intervention, Background,
Outcome, Study Design, Other

1,000 abstracts (Kim
et al., 2011)

bio

PubMedRCT background, objective, method, result,
conclusion

20,000 and 200,000 ab-
stracts (Dernoncourt and
Lee, 2017)

bio

Wilbur FOCUS, POLARITY, CERTAINTY,
EVIDENCE, DIRECTIONALITY

10,000 sentences
(Shatkay et al., 2008)

bio

E
nt

.

ScienceIE Task, Process, Material 500 (Augenstein et al.,
2017)

CS

R
el

at
io

n

Gábor USAGE, RESULT, MODEL,
PART WHOLE, TOPIC, COM-
PARISON

500 abstracts (Gábor
et al., 2018)

CL

SciDTB [Coarse level] Attribution, Back-
ground, Cause-effect, Comparison,
Condition, Contrast, Elaboration,
Enablement, Evaluation, Explain,
Joint, Manner-means, Progression,
Same-unit, Summary, Temporal

798 abstracts (Yang and
Li, 2018)

CL

H
yb

ri
d

Green [Levels 1-3] 1. Causation, 1.1
One Group, 1.1.1 Agreement Argu-
ments, 1.1.2 Eliminate Candidates,
1.1.3 Explanation-Based, 1.2 Two
Group, 1.2.1 Difference, 1.2.2 Analogy
(Causal), 1.2.3 Explanation-Based, 2.
Other, 2.1 Classification, 2.2 Confirma-
tion

one (Green, 2018) bio

Table 1: Summary of the selected schemes and corresponding categories, size of the annotated corpora, and topic
of the latter. Only the categories from the certain levels were shown for some schemes with various layers. Num-
bers or the corpora refer to full-text documents, unless otherwise stated. Regarding the topics, “CL” stands for
computational linguistics, “bio” for biomedicine, “chem” for chemistry, “CG” for Computer Graphics, “phy” for
Physics, “eng” for Engineering, “LS” for Life Sciences, and “CS” for Computer Science.
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with five categories. The corpus is freely avail-
able8 as well as at least two tools for its detec-
tion, namely the one from Jin and Szolovits (2018)
(cf. PIBOSO above) and one based on AllenNLP
(Achakulvisut et al., 2018).

Wilbur (Wilbur et al., 2006). It consists of a
schema developed for biomedical articles on five
dimensions. Later, the authors annotated 10,000
sentences from full-text publications (Shatkay
et al., 2008), which was made available after a de-
tailed analysis (Rzhetsky et al., 2009).9 The anno-
tation are on the level of fragments, which usually
correspond to either the sentences or phrases.

2.2 Entity-level Schemes
Entity-level schemes aim at annotating the ele-
ments on the level of entities. Gupta and Manning
(2011) proposed a simple schema based on three
concepts and labeled 474 abstracts of computa-
tional linguistics. More recently, Jung (2017) de-
fined five entity types and annotated 1,000 articles
about information and communication technology
(ICT) and chemical engineering. Blake (2010)
also proposed a schema based on various levels
of evidence (implicit and explicit claims) and an-
notated 29 full-text biomedical articles. However,
none of the above data seems to be available but
we found one schema with annotated corpus:

ScienceIE (Augenstein et al., 2017). This
schema proposes three elements on the entity level
as well as the annotation of keyphrases. The cor-
pus contains 500 articles about Computer Science,
Material Sciences and Physics, which were split
into training, development and test datasets and
used for the a SemEval task in 2017. We found
the implementation from two of the participants
on the shared task, namely (Prasad and Kan, 2017)
and (Eger et al., 2017).

2.3 Relation-level Schemes
Previous work also considered schemes that con-
sider relations between scientific elements. Prasad
et al. (2011) defined eight discourse relations in
the Biomedical Discourse Relation Bank (Bio-
DRB) and annotated 24 articles from the GENIA
corpus, which was later used in a couple of works
(Ramesh and Yu, 2010; Polepalli Ramesh et al.,

8https://github.com/
Franck-Dernoncourt/pubmed-rct

9https://doi.org/10.1371/journal.pcbi.
1000391.s002

2012). Tateisi et al. (2013) defined 16 relations
and annotated 30 articles, while Meyers et al.
(2014) proposed five relations and sub-relations
with which they annotated 200 biomedical arti-
cles. However, none of the data above seems to
be available, but we found corpora for the follow-
ing two schemes:

Gábor (Gábor et al., 2016) It is a schema in
the form of an ontology of 18 relations for the
scientific literature, besides three more general re-
lations. Six of these relations were recently ad-
dressed in the SemEval’18 Task 7, for which an-
notated data is available (Gábor et al., 2018). For
sub-task 2 in SemEval’18 Task 7, the code from
the team that obtained the best scores in this task
is available (Luan et al., 2018).

SciDTB (Yang and Li, 2018). It is a discourse
treebank for scientific articles that includes 17
coarse-grained and 26 fine-grained relation types.
They annotated 798 abstracts from the ACL An-
thology that are available for download.10

2.4 Hybrid Schemes
Hybrid schemes contain labels which cover more
than one of the levels above. Tateisi et al. (2016)
created an ontology of entities and relations and
annotated 400 abstracts about computational lin-
guistic. However, we found only one hybrid
schema for which annotated data is available:

Green (Green, 2018). It is schema of 15 argu-
ments annotated for one single article from the
biomedical domain. The schema includes both en-
tities and relations that are organized in a short tax-
onomy. Both schema and the annotated article are
available.11

3 Methods

We evaluated tools that consider some of the
schemes that we found (cf. Section 2) for the
task of text similarity in the scope of our use case
of mining alternative methods for animal experi-
ments. In this section we described the data and
the tools that we used as well as the evaluation
methodology.

3.1 Data
We evaluated the selected schemes and tools for
the task of text similarity. For this purpose, we

10https://github.com/PKU-TANGENT/SciDTB
11https://github.com/greennl/BIO-Arg
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model our problem as the following: given an in-
put document that describes an animal experiment,
we would like to mine similar candidate docu-
ments that are potential alternatives to animal test-
ing. Our definition of similarity requires that both
input and candidate documents should have simi-
lar research goal and comparable outcomes. How-
ever, the methods in the input document should be
substantial different from those in the candidate
documents. Therefore, we aim to compare input
and candidate documents based on certain rhetor-
ical elements as opposed to using the whole text.

Our evaluation datasets consist of seven in-
put documents from Medline whose identifiers
(PMIDs) are 11489449, 11932745, 16192371,
16850029, 19735549, 21494637 and 24204323.
For each input document, we collected the top
200 documents (titles and abstracts) retrieved from
PubMed’s “similar articles” functionality. On one
hand, the candidate documents are already very
similar to the input document. On the other hand,
the list of candidates returned by PubMed does not
consider our definition of similarity.

In order to build a suitable test set for our use
case, a biomedical researcher manually validated
at least the top 100 documents with regards to
three degrees of similarity: very similar, similar
and not similar. These three labels only consider
the similarity of the research goals of each pair
of abstracts (input vs. candidate documents) but
do not address the 3R principles. Some docu-
ments were ignored because either they were only
partially similar or because no decision could be
made only based on the title and the abstract.

After manual validation by the expert, our seven
datasets encompass a total of 562 publications (ti-
tles and abstracts). Figure 1 illustrates the distri-
bution of the labels for each input document. Only
four from the seven input documents had very sim-
ilar publications (from only 2 to 8 of them), while
similar ones (from only 4 to 19) could be found for
all of them. However, the non similar publications
are still the largest part (from 56 to 76) of the list.
The annotated data is available for download 12.

Some of the tools that we compared require
some linguistic information not originally in-
cluded in our documents, such as sentences and to-
kens. We utilized syntok13 for both sentence split-
ting and tokenization to build input data for one of

12https://github.com/mariananeves/
scientific-elements-text-similarity

13https://github.com/fnl/syntok

Figure 1: Number of documents according to the de-
gree of similarity to the input document. The number
of the dataset (1-7) is shown before the PMID.

the tools, namely, Prasad and Kan (2017).

3.2 Tools

We found a few available tools that address some
of schemes discussed in Section 2. However, we
had dismiss some of them due to various prob-
lems.

We experienced many problems with the Ten-
sorFlow library while trying the tool14 developed
by (Eger et al., 2017) for the ScienceIE schema.
The tool seems to require a version of the library
that it is no longer available and we could not re-
solve this issue not even after contacting the tool’s
developers. We also dismissed the tool15 from Jin
and Szolovits (2018) for the PIBOSO and Pub-
MedRCT schemes. The installation worked but
we were not able to train it due to memory prob-
lems. Finally, we did not try the tool16 from
Luan et al. (2018) since it addresses a relation-
based schema (Gábor) that requires pre-tagged en-
tities. Using named entities provided by other
tools would probably add too much noise to the
experiment. Finally, we had to dismiss the SAPI-
ENTA tool (Liakata et al., 2012b) because it only
allows uploading documents one by one to the
Web application and we could not overcome this
problem. We describe below the four tools that we

14https://github.com/UKPLab/
semeval2017-scienceie

15https://github.com/jind11/
HSLN-Joint-Sentence-Classification

16https://bitbucket.org/luanyi/
semeval2018/src/master/
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tried for the extraction of rhetorical elements. Ex-
amples for the sentence-based (zones) and entity-
based annotations are shown in Figure 2. We re-
leased in the GitHub repository the annotations ex-
tracted by the tools in the JSON format supported
by the TextAE tool17.

Achakulvisut et al.18 (Achakulvisut et al.,
2018) (PubMedRCT schema). It addresses the
PubMed RCT schema, thus provides predictions
for five zoning labels, namely, “Background”,
“Objective”, “Method”, “Results” and “Conclu-
sions”. We utilized the pre-trained models for
Conditional Random Fields (CRF) as provided by
the tool. Given that there is no publication, it is
not clear what methods are behind the available
models, but probably CRF.

ArguminSci19 (Lauscher et al., 2018a) (Dr. In-
ventor schema extended). ArguminSci is avail-
able both for download as well as on-line (Web ap-
plication). It provides predictions for five schemes
but we considered only the “Discourse Role Clas-
sification (DRC)” whose labels are “Background”,
“Challenge”, “Approach”, “Outcome” and “Fu-
ture Work”. ArguminSci’s models are based on
bidirectional recurrent networks with long short-
term memory cells (Bi-LSTMs) and we utilized
the command line version of the tool.

MAZEA tool20 and schema (Dayrell et al.,
2012). The tool addresses six categories,
namely, “Background”, “Gap”, “Purpose”,
“Method”, “Result” and “Conclusion”. It is
currently not available for download but only as
a Web tool that requires to manually upload each
document individually. However, the developers
kindly processed our documents locally and sent
the predictions back to us. The tool utilizes
machine learning algorithms, such as Support
Vector Machines (SVM) and Decision Trees.

Prasad and Kan21 (Prasad and Kan, 2017) (Sci-
enceIE schema). It addresses the three labels
for entities from the ScienceIE schema, namely,
“Task”, “Process” and “Material”. From the

17http://textae.pubannotation.org/
18https://github.com/titipata/

detecting-scientific-claim
19https://github.com/anlausch/

ArguminSci
20http://www.nilc.icmc.usp.br/

mazea-web/
21https://github.com/animeshprasad/

science_ie

repository, we utilized the scripts for feature pro-
cessing and the template to train the model with
CRF++22. We had to correct the provided template
in order to successfully train the system. The en-
tity recognition approach is based on various fea-
tures and uses the CRF algorithm.

3.3 Evaluation

We evaluated the tools for the task of text simi-
larity. Therefore, we calculated the similarity be-
tween the input and candidate documents, either
based on the whole text or on selected rhetorical
elements as provided by the tools. When utiliz-
ing the output from the various tools, we built a
pseudo-document based either on the sentences or
entities that we obtained. For the zoning tools, we
concatenated the sentences to form a single text,
while we printed the entities (one per line) for the
entity-based predictions. Similarly, when evalu-
ating combination of various labels, we concate-
nated the text from various labels into a single file.

We performed text similarity using the
TextFlow tool (Mrabet et al., 2017) and utilized
these similarity scores to rank the candidate doc-
uments. Subsequently, we evaluated the ranked
list with regard the metrics of precision, recall and
f-score at rank 10, i.e. P@10, R@10 and F@10.
P@10 is the rate of correct positive candidate doc-
uments in the top 10 highest ranked documents,
i.e. P@10 = TP@10

10 . The R@10 corresponds to
the rate of positives candidate documents in the
top 10 over the total of all positive instances, i.e.
R@10 = TP@10

Num.Positive . Finally, the F@10 is the
harmonic average of the P@10 and R@10 above,
i.e. F@10 = 2∗P@10∗R@10

P@10+R@10 .
We considered as positive examples all those

publications manually classified by our expert as
“very similar” or “similar”. Given the few of these
instances in our datasets, we decided to make no
distinction between both categories. As a result,
the number of positive examples for the input doc-
uments in Figure 1 are 4, 10, 16, 11, 8, 23 and
6, respectively. We evaluated at rank 10 due to
the reason that only two datasets have more than
20 positive instances, while only two of them over
10 positive instances. For datasets which contain
more than 10 positive examples, we considered the
number of positive instances to be equal to 10 in
the equation of R@10. For the final comparison
between the various tools and baselines, we per-

22https://taku910.github.io/crfpp/
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Figure 2: Visualization in the TextAE tool of the annotations provided by two of the tools that we used.

formed an average of the metrics over the seven
datasets.

We defined two baselines for comparison: (i)
the original order of the candidate documents as
returned by PubMed’s “similar articles” function-
ality; and (ii) string similarity based on the whole
text (title and abstract) without any pre-processing
on the text. For the first baseline, we searched in
PubMed for each of the seven PMIDs and down-
loaded the list of the top 100 similar articles (stand
of March 13th, 2019). Given that the current list of
similar articles might include citations not present
at the time when our corpus was annotated, we dis-
missed any document not included in our dataset
when calculating the above metrics, i.e., we did
not consider them as false positives.

4 Results

We compared the tools based on the metrics of
P@10, R@10 and F@10 that assess the perfor-
mance of the various tools for the ranking task.
We performed a total of 38 experiments which in-
cludes the four tools and baselines, as well as some
combinations of selected labels from the tools.
The combination of labels were decided based on
the performance of the single labels and on our un-
derstanding of which labels are more relevant for
our use case. Table 2 presents the results for our
two baselines and the best results for each tool. In
the following we specify the labels that obtained
the best results:

• Achakulvisut et al: the combination of
all labels, i.e. “Background-Conclusions-
Methods-Objective-Results”

• ArguminSci: two combinations of labels
were equally good: “Background-Challenge-

Tools P@10 R@10 F@10
PubMed 0.30 0.33 0.31

Title+Abstract 0.43 0.51 0.45
Achakulvisut et al 0.44 0.52 0.47

ArguminSci 0.47 0.56 0.50
MAZEA 0.4 0.47 0.42

Prasad and Kan 0.44 0.54 0.47
Min score 0.14 0.16 0.15
Max score 0.83 1.0 0.90

Table 2: Summary of the results from the two base-
lines (two first rows) and when using the selected tools.
The maximum scores represent the maximum value of
P@10, R@10 and F@10 that could have been obtained
by any of the approaches. The minimum scores are the
ones obtained when randomly selecting 10 candidates
in each dataset, averaged over 1,000 experiments.

Outcome” and “Background-Challenge-
Outcome-FutureWork”.

• MAZEA: the combination “Method-Result”.

• Prasad and Kan: the combination “Process-
Material”.

For our datasets, all approaches using rhetori-
cal tools obtained a better performance than the
baseline from PubMed. Further, three tools scored
higher than our strong baseline that uses TextFlow
over the whole text (titles and abstracts). Two of
the tools (Achakulvisut et al and ArguminSci) ad-
dress zoning elements while one of them (Prasad
and Kan) returns entity-level annotations. How-
ever, none of the tools scored close the maximum
possible scores. Given that we do not have at least
10 positive instances (“very similar” or “similar”)
for some of our input documents, our maximum
P@10 is of 0.83 instead of 1.0.

The three zoning tools rely on labels that can
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Tools Labels P@10 R@10 F@10

A
ch

ak
ul

vi
su

t Background 0.28 0.32 0.30
Objective 0.33 0.41 0.35
Methods 0.31 0.40 0.34
Results 0.20 0.25 0.22

Conclusions 0.23 0.26 0.24

A
rg

um
in

Sc
i Background 0.23 0.25 0.24

Challenge 0.23 0.26 0.24
Approach 0.26 0.32 0.28
Outcome 0.41 0.50 0.44

Future Work 0.33 0.41 0.35

M
A

Z
E

A

Background 0.24 0.28 0.25
Purpose 0.24 0.25 0.25
Method 0.30 0.37 0.32
Result 0.28 0.32 0.30

Conclusion 0.23 0.30 0.25

Pr
as

ad

Process 0.37 0.48 0.40
Material 0.31 0.35 0.33

Task 0.28 0.36 0.31

Table 3: Performance of the single labels in the re-
ranking task.

be mapped to one another, as shown by the order
of their labels in Table 3. When examining the
performance of single labels, only the “Outcome”
label from ArguminSci tool could perform close
our strong baseline.

The labels that we expected to be more relevant,
i.e. the ones more related to the background and
outcome sections and less with the methods sec-
tion, did not always perform better in the rank-
ing task. For instance, the F@10 obtained by
the label “Approach” from ArguminSci performed
slightly better (0.28) than the “Background” (0.24)
and “Challenge” (0.24) labels. Similarly, the label
“Method” from MAZEA performed better (0.32)
than “Background” (0.25) and “Purpose” (0.25)
sections. We wonder whether the good perfor-
mance of methods-related labels were actually due
to mistakes in the classification performed by the
tools.

Our experiments showed that a combination
of labels always performed better than the sin-
gle ones, while some combinations of labels per-
formed better than others (cf. Figure 3). We could
not find any difference in the text similarity scores
(as computed by TextFlow) when considering dif-
ferent order of the same labels in the concatenation
of the text.

5 Discussion

We carried out a total of 38 experiments that in-
volved diverse tools, single labels and combina-
tion of various labels. We ran an error analysis to
learn more about the false negatives and false pos-
itives that we obtained.

At least one positive document was missed by
any of the tools, i.e. was not placed among the
top 10 positions. Many of the documents that we
missed are certainly due to the limitation of con-
sidering only the top 10 highest ranked positions.
However, none of the experiments obtained a re-
call of 1.0. The highest recall that we obtained was
0.9 for the dataset 3 (16192371) using the Argu-
minSci tool and either the single label “Outcome”
or the combination of labels “Challenge-Outcome-
FutureWork”.

On one hand, five documents were missed by
all experiments (38 times), namely, candidate doc-
uments “19155551”, “29133591”, “21362567”,
“19667187” and “26047474” from datasets 3, 5, 6,
6, and 7, respectively. On the other hand, the can-
didate document “25174890” from dataset 6 was
the least missed one: only by three experiments. A
total of 333 documents were wrongly classified as
positive, i.e. were placed among the top 10 ones,
by any of the 38 experiments. No candidate docu-
ment was mistakenly classified by all approaches,
but the more frequent ones were: “21501651”
(27 times) and “23571276” (25 times), both from
dataset 4, and “11494364” (25 times) from dataset
7. Our expert checked again the labels assigned
to the top FPs and FNs above described and con-
firmed that their labels are correct and that the doc-
uments have been wrongly classified by the corre-
sponding approaches.

Our experiments have shown that many of the
tools can indeed support our use case, specially
when compared to the original list provided by
PubMed. Regarding the integration of these tools
into a workflow, one of the tools is currently
not available (MAZEA), while all the others need
some adaptations to be used in real-life applica-
tions. With respect to the methods behind the
tools, ArguminSci, which is based on LSTM, per-
formed slightly better than the ones based on CRF
(Achakulvisut et al, Prasad and Kan) and superior
than the machine learning algorithms in MAZEA.
However, we did not evaluate the predictions made
by the tools, but only their impact in a specific text
similarity task.
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Figure 3: Comparison to the baselines of various combinations of labels as provided by the tools.

We expected that the best performing tools
would be the ones that utilized corpora specifically
built for the biomedical domain. From the tools
that we evaluated, only Achakulvisut et al and
MAZEA were specifically trained on documents
from the biomedical or health domains. Nev-
ertheless, ArguminSci, the best performing one,
was trained on documents from computer graph-
ics while and Prasad and Kan utilizes documents
about computational linguistics.

We also investigated whether there was any im-
pact of the document type in the corpora, i.e. ei-
ther full texts or only abstracts, on the performance
of the corresponding tools. However, we did not
observe any clear association between these two
aspects. While the best performing tool (Argu-
minSci) was trained on full texts, Achakulvisut et
al utilizes only Medline abstracts. Similar to Ar-
guminSci, the tool from Prasad and Kan is also
based on full text documents.

We carried out experiments with various tools
but limited to a very specific use case. Even
though our datasets contains a reasonable number
of documents (562), the similarity of the candi-
date documents was computed with respect to only
seven input documents, and datasets were anno-
tated by only one annotator. Further, we only con-
sidered titles and abstracts in our evaluation, while
some tools were trained on full-text documents.
Previous work has already shown the differences
of information and performance of NLP tools in
biomedical abstracts and full texts (Verspoor et al.,
2012; Mons et al., 2004). Our future work will ad-

dress many aspects: (i) use of full texts; (ii) im-
provement of the datasets with additional annota-
tors; (iii) estimation of the compliance with the 3R
principles by a candidate document, in addition to
the calculation of similarity; (iv) evaluation of the
relation-based tool (Luan et al., 2018) and the one
for which we experienced memory problems (Jin
and Szolovits, 2018); and (v) evaluation of other
schemes (e.g. Wilbur et al. (2006)) for which an
implementation is currently not available.

6 Conclusions

We surveyed schemes that model scientific ele-
ments in publications and selected four schemes
for which we could find an available tool. We uti-
lized the predictions from these tools for assessing
the text similarity between documents and further
ranking them in the scope of mining alternative
methods to animal testing. Our experiments show
that a considerable improvement can be obtained
when using ArguminSci, with respect to the origi-
nal ranking returned by PubMed and to the strong
baseline that we considered. However, there is still
much room for improvement given that the ob-
tained scores are still far below the possible maxi-
mum values.
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Abstract

We tackle the tasks of automatically identi-
fying comparative sentences and categorizing
the intended preference (e.g., “Python has bet-
ter NLP libraries than MATLAB” → Python,
better, MATLAB). To this end, we manually
annotate 7,199 sentences for 217 distinct tar-
get item pairs from several domains (27% of
the sentences contain an oriented comparison
in the sense of “better” or “worse”). A gradi-
ent boosting model based on pre-trained sen-
tence embeddings reaches an F1 score of 85%
in our experimental evaluation. The model can
be used to extract comparative sentences for
pro/con argumentation in comparative / argu-
ment search engines or debating technologies.

1 Introduction

Everyone faces choice problems on a daily ba-
sis: from choosing between products (e.g., which
camera to buy), to more generic preferences for
all kinds of things: cities to visit, universities to
study at, or even programming languages to use.
Informed choices need to be based on a compar-
ison and objective argumentation to favor one of
the candidates. Often, people seek support from
other people—for instance, a lot of questions like
“How does X compare to Y?” are asked on ques-
tion answering platforms.

The Web also contains pages about compar-
ing various objects: Specialized web resources
systematize human experts results for domain-
specific comparisons (for insurances, cameras,
restaurants, hotels, etc.) while systems like Wol-
framAlpha aim at providing comparative function-
ality across domains. Still, such pages and sys-
tems usually suffer from coverage issues relying
on structured databases as the only source of infor-
mation ignoring the rich textual content available
on the web.

No system is currently able to satisfy open-
domain comparative information needs with suf-
ficient coverage and explanations of the compared
items’ relative qualities. Indeed, information re-
trieval systems and web search engines are able
to directly answer many factoid questions (one-
boxes, direct answers, etc.) but do not yet treat
comparative information needs any different than
standard queries. Search engines show the default
“ten blue links” for many comparative informa-
tion needs even though a direct answer enriched
by pro/cons for the different options might be the
much more helpful result.

One reason might be that despite the wealth of
comparisons on the web with argumentative ex-
planations, there is still no widespread technology
for its extraction. In this work, we propose the
first steps towards closing this gap by proposing
classifiers to identify and to categorize compara-
tive sentences.

The task of identifying and categorizing com-
parative sentences is to decide for a given sentence
whether it compares at least two items and, if so,
which item “wins” the comparison. For instance,
given the sentence Python is better suited for data
analysis than MATLAB due to the many available
deep learning libraries, the system should cate-
gorize it as comparative and that it favors Python
(Python “wins” over MATLAB). Identifying and
categorizing comparative sentences can be viewed
as a sub-task of argumentation mining (Lippi and
Torroni, 2016) in the sense that detected compar-
ative sentences (and probably also their context
sentences) can support pro/con analyses for two or
more items. Such comparative pro/cons might be
used to trigger reactions in debates (one advantage
of some item can be countered by some advantage
of the other item, etc.) or they can form the ba-
sis for answering comparative information needs
submitted to argument search engines.
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Our main contributions are two-fold:

1. We release CompSent-19, a new corpus con-
sisting of 7,199 sentences containing item
pairs (27% of the sentences are tagged as
comparative and annotated with a prefer-
ence);

2. We present an experimental study of super-
vised classifiers and a strong rule-based base-
line from prior work.

The new CompSent-19 corpus,1 pre-trained
sentence categorization models, and our source
codes2 are publicly available online.

2 Related Work

A number of online comparison portals like Go-
Compare or Compare.com provide access to struc-
tured databases where products of the same class
can be ranked along with their aspects. Other
systems like Diffen.com and Versus.com try to
compare any pair of items on arbitrary proper-
ties. They reach high coverage through the inte-
gration of a large number of structured resources
such as databases and semi-structured resources
like Wikipedia, but still list aspects side by side
without providing further verbal explanations—
none of the portals aim at extracting comparisons
from text. Promising data sources for textual com-
parisons are question answering portals like Quora
or Yahoo! Answers that contain a lot of “How does
X compare to Y?”-questions with human answers
but the web itself is an even larger source of tex-
tual comparisons.

Mining and categorizing comparative sentences
from the web could support search engines in an-
swering comparative queries (with potential argu-
mentation justifying the preference in the mined
sentence itself or in its context) but also has opin-
ion mining (Ganapathibhotla and Liu, 2008) as an-
other important application. Still, previous work
on recognizing comparative sentences has mostly
been conducted in the biomedical domain. For in-
stance, Fiszman et al. (2007) identify sentences
explicitly comparing elements of drug therapy
via manually developed comparative and direc-
tion patterns informed by a lot of domain knowl-
edge. Later, Park and Blake (2012) trained a high-
precision Bayesian Network classifier for toxicol-

1zenodo.org/record/3237552
2github.com/uhh-lt/comparative

ogy publications that used lexical clues (compar-
atives and domain-specific vocabulary) but also
paths between comparison targets in dependency
parses. More recently, Gupta et al. (2017) de-
scribed a system for the biomedical domain that
also combines manually collected patterns for lex-
ical matches and dependency parses in order to
identify comparison targets and comparison type
using the as gradable, non-gradable, superlative-
taxonomy of Jindal and Liu (2006).

Developing a system for mining comparative
sentences (with potential argumentation support
for a preference) from the web might utilize spe-
cialized jargon like hashtags for argumentative
tweets (Dusmanu et al., 2017) but at the same time
faces the challenges recognized for general web
argument mining (Šnajder, 2017): web text is typ-
ically not well formulated, misses argument struc-
tures, and contains poorly formulated claims. In
contrast to the use of dependency parses for min-
ing comparative sentences in the biomedical do-
main, such syntactic features are often impossible
to derive for noisy web text and were even shown
to not really help in identifying argument struc-
tures from well-formulated texts like persuasive
essays or Wikipedia articles (Aker et al., 2017;
Stab and Gurevych, 2014); simpler structural fea-
tures such as punctuation subsumed syntactic fea-
tures in the above studies.

The role of discourse markers in the identifi-
cation of claims and premises was discussed by
Eckle-Kohler et al. (2015), who found such mark-
ers to be moderately useful for identifying ar-
gumentative sentences. Also Daxenberger et al.
(2017) noted that claims share lexical clues across
different datasets. They also concluded from
their experiments that typical argumentation min-
ing datasets were too small to unleash the power
of recent DNN-based classifiers; methods based
on feature engineering still worked best.

3 Dataset

As there is no large publicly available cross-
domain dataset for comparative argument min-
ing, we create one composed of sentences anno-
tated with markers BETTER (the first item is bet-
ter or “wins”) / WORSE (the first item is worse or
“looses”) or NONE (the sentence does not contain
a comparison of the target items). The BETTER-
sentences represent a pro argument in favor of the
first compared item (or a con argument for the sec-
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ond item) while the roles are exchanged for the
WORSE-sentences.

In our dataset, we aim to minimize domain-
specific biases to rather capture the nature of com-
parison and not the nature of particular domains.
We thus decided to control the specificity of do-
mains via the selection of the comparison targets.
We hypothesized and could confirm in preliminary
experiments that comparison targets usually have
a common hypernym (i.e., they are instances of the
same class), which we utilize for the selection of
the compared item pairs.

The most specific domain we choose is Com-
puter Science with comparison targets like pro-
gramming languages, database products and tech-
nology standards such as Bluetooth or Ethernet.
Many computer science concepts can be compared
objectively (e.g., via transmission speed or suit-
ability for certain applications). The comparison
targets were manually extracted from Wikipedia
“List of”-articles that cover computer science. In
the annotation process, annotators were asked to
label sentences from this domain only if they had
some basic knowledge in computer science.

The second, broader domain is Brands. It con-
tains items of various types (e.g., cars, electron-
ics, or food). As brands are present in every-
day life, we assume basically anyone to be able
to label sentences containing well-known brands
such as Coca-Cola or Mercedes. Again, target
items for this domain were manually extracted
from Wikipedia “List of”-articles.

The third Random domain is not restricted to
any topic. For each of 24 randomly selected seed
words,3 10 similar words were collected based on
the distributional similarity JoBimText API (Bie-
mann and Riedl, 2013).

Especially for brands and computer science, the
resulting item lists were large (4,493 in brands
and 1,339 in computer science). In a manual
inspection, low-frequency and ambiguous items
were removed (e.g., the computer science con-
cepts “RAID” (a hardware concept) and “Unity”
(a game engine) are also regularly used nouns).
The remaining items were combined into pairs.
For each item type (seed Wikipedia list or seed
word), all possible item combinations were cre-
ated. These pairs were then used to mine sentences

3Created using randomlists.com: book, car, carpenter,
cellphone, Christmas, coffee, cork, Florida, hamster, hiking,
Hoover, Metallica, NBC, Netflix, ninja, pencil, salad, soccer,
Starbucks, sword, Tolkien, wine, wood, XBox, Yale.

containing both items from a web-scale corpus.

Our sentence source is the publicly available in-
dex of the DepCC (Panchenko et al., 2018), an
index of more then 14 billion dependency-parsed
English sentences from the Common Crawl fil-
tered for duplicates. This index was queried for
sentences containing both items in each target pair.
For 90% of the pairs, we also added frequent com-
parative cue words4 to the query in order to bias
the results towards actual comparative sentences
but at the same time also allow for comparisons
that do not contain any of the anticipated cues.
This focused querying was necessary as a random
sampling would have resulted in only a very tiny
fraction of comparative sentences. Note that even
sentences containing a cue word do not necessarily
express a comparison between the desired targets
(e.g., dog vs. cat: He’s the best pet that you can
get, better than a dog or cat). It is thus especially
crucial to enable a classifier to learn not to rely on
the presence of the cue words only (which is very
likely in a random sample of sentences with very
few comparisons). For our dataset, we keep target
pairs with at least 100 retrieved sentences.

From all sentences for the target pairs, we ran-
domly sampled 2,500 instances in each category
as potential candidates for a crowd-sourced an-
notation that we conducted on the Figure Eight
platform in several small batches. Each sentence
was annotated by at least five trusted workers. Of
all annotated sentences, 71% received unanimous
votes, and at least 4 out of 5 workers agreed for
over 85%, at least 4 out of 5 workers agreed.

Our final Comparative Sentences Corpus 2019
(CompSent-19) is formed by the 7,199 sentences
for 271 distinct item pairs that remained after re-
moving the 301 sentences with an annotation con-
fidence below 50%, a Figure-Eight-internal mea-
sure combining annotator trust and voting. Ta-
ble 1 shows example sentences with their annota-
tion while Table 2 outlines the corpus characteris-
tics. Only a 27%-minority of the sentences are an-
notated as comparative (despite the selection bias
with comparative cue words); in 70% of these, the
favored item is named first.

4Better, easier, faster, nicer, wiser, cooler, decent, safer,
superior, solid, terrific, worse, harder, slower, poorly, uglier,
poorer, lousy, nastier, inferior, mediocre.
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Table 1: Examples sentences for the three domains with their annotated comparative label (the first item is
BETTER/WORSE/NONE than the second item (note that the item order matters).

Domain Sentence Label

CompSci This time Windows 8 was roughly 8 percent slower than Windows 7. WORSE

CompSci I’ve concluded that it is better to use Python for scripting rather than Bash. BETTER

Brands These include Motorola, Samsung and Nokia. NONE

Brands Honda quality has gone downhill, Hyundai or Ford is a much better value. WORSE

Random Right now, I think tennis is easier than baseball. BETTER

Random I’ve grown older and wiser and avoid the pasta and bread like the plague. NONE

Table 2: Characteristics of our CompSent-19 dataset.

Label
Domain BETTER WORSE NONE Total

CompSci 581 248 1,596 2,425
Brands 404 167 1,764 2,335
Random 379 178 1,882 2,439

Total 1,364 593 5,242 7,199

4 Supervised Categorization of
Comparative Sentences

We split the 7,199 sentences of our CompSent-19
corpus into an 80% training set (5,759 sentences:
4,194 NONE, 1,091 BETTER, and 474 WORSE) and a
20% held-out set. During development, the ex-
periments were evaluated on the training set using
stratified 5-fold cross-validation; the held-out set
was only used for the final evaluation. If not stated
otherwise, scikit-learn (Pedregosa et al., 2011)
was used to perform feature processing, classifi-
cation, and evaluation.

4.1 Preprocessing
A first preprocessing step decides if the full sen-
tence or only a part of it should be used for feature
computation. Each sentence is considered to con-
sist of three parts: the beginning part are all words
before the first comparison target, the ending part
are all words after the second comparison target,
and the middle part are all words between the tar-
gets. Different combinations of partial sentence
representations were used in our classification ex-
periments.

The second preprocessing step is carried out to
examine the importance of the lexicalized com-
parison targets for the classification. The targets
either stay untouched, are removed, or replaced
using two different replacement strategies. In the
first variant, both targets are replaced by the term
ITEM (oblivious replacement). In the second vari-

ant, the first object was replaced by ITEM A and
the second by ITEM B (distinct replacement).

4.2 Supervised Classification Models

We compare 13 models ranging from the lower-
capacity linear models, such as Logistic Regres-
sion, Naı̈ve Bayes, and SVMs with various ker-
nels to high-capacity ones based on decision trees
and their ensembles such as Random Forest, Ex-
tra Trees, and Gradient Boosting relying on de-
cision trees. Implementation-wise, twelve of the
tested models are available via scikit-learn, while
for XGBoost we used the implementation of Chen
and Guestrin (2016). Apart from XGBoost and the
Extra Trees Classifier, all models have been used
in previous argumentation mining studies.

4.3 Sentence Representations

We study the classification performance impact of
various feature types.

Bag of Words and Bag of Ngrams The bag-of-
words (BOW) model is a simple vector representa-
tion of text documents. All distinct words from the
corpus form the vocabulary V . Typically, a docu-
ment d is represented by a V -dimensional vector d
(Salton et al., 1975). When comparing different
classification models, we use BOW with binary
weights as a baseline but also try extensions like
tf- or tf-idf-weigthing and bag of token n-grams.
In general, BOW models have a rather high rep-
resentation length while being rather sparse at the
same time (many 0 feature scores).

Part-of-speech (POS) n-grams Another vector
representation is formed by the frequencies of the
500 most frequent POS bi-, tri and four-grams.5

5Using spaCy’s POS tagger:spacy.io/api/annotation#pos-
tagging.
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Contains JJR A Boolean feature capturing the
presence of a JJR POS tag (comparative adjective).

Word Embeddings We rely on GloVe (Pen-
nington et al., 2014) embeddings of size 300 to
create a dense, low-dimension vector representa-
tion of a sentence.6 We average all word vectors
of a sentence, representing it by kind of a centroid
word—a simple method shown to be effective for
several tasks (Wieting et al., 2016).

Sentence Embeddings Bags of words and aver-
age word embeddings lose sequence information,
which intuitively should help for (directed) com-
parison extraction. Sentence embeddings aim to
learn representations for spans of text instead of
single words by taking sequence information into
account. Several methods like FastSent (Hill et al.,
2016) or SkipTought (Kiros et al., 2015) have been
proposed to create sentence embeddings. We use
InferSent (Conneau et al., 2017) that learns sen-
tence embeddings similar to word embeddings. A
neural network is trained on the Stanford Natu-
ral Language Inference (SNLI) dataset (Bowman
et al., 2015) containing 570,000 English sentence
pairs (each labelled as entailment, contradiction,
or neutral). InferSent combines the embeddings u
and v of the two sentences from a sentence pair
into one feature vector (containing the concatena-
tion, the element-wise product, and the element-
wise difference of u and v), that is then fed into a
fully connected layer and a softmax layer. We use
the pre-trained embeddings in our experiments.7

Dependency-based Features The HypeNet
method to detect hypernym relations between
words (Shwartz et al., 2016) combines distri-
butional and dependency path-based methods
to create a vector representation for word pairs.
The LexNet generalization of HypeNet encodes
tries to capture multiple semantic relationships
between two words also using dependency path
information (Shwartz and Dagan, 2016). Since
dependency paths have been one of the major
sources for comparison extraction in related work
from the biomedical domain (see Section 2), we
also include two LexNet-based features in our
experiments.

LexNet (original) In the original LexNet pa-
per, an LSTM (Hochreiter and Schmidhuber,

6Using spaCy’s en core web lg model:
spacy.io/models/en#section-en core web lg.

7github.com/facebookresearch/InferSent

1997) is used to create path embeddings out of
the string paths. Since the details of the LSTM
encoder are not mentioned, we tested different ar-
chitectures and hyper-parameters and achieved the
best results with one LSTM layer with 200 neu-
rons, batch size of 128, RMSprop with learning
rate 0.01 and 150 epochs, and max pooling with a
pool size of 2. A Keras embedding layer is used
to create word embeddings of length 100 for the
string path components.

In the original study, paths were restricted to a
length of four with the first comparison target hav-
ing to be reachable from the lowest common head
of the two targets by following left edges only, the
second one by following right edges. With this
LexNet (original) restriction, a path was found for
only 1,519 of our 5,759 training sentences.

LexNet (customized) To overcome the
LexNet (original) coverage issue, we relaxed
the restriction by extending the maximal path
length to 16 and ignoring edge directions. With
this second LexNet (customized) setup, for
only 399 training sentences no path was found
(assigned to the artificial NOPATH).

5 Experiments

We conduct classification experiments using sev-
eral machine learning approaches and represen-
tations and analyse the results. We use com-
mon performance metrics: precision, recall and F1
per each class and micro-averaged when reporting
overall results.

5.1 Impact of Classification Models
To identify the best classification algorithm, we
used a fixed baseline set of feature representations:
a sparse bag-of-words model with binary weights
computed on the whole sentence (see Section 4.3).
We used F1 score to measure the models perfor-
mance.

Tree-based methods and linear models worked
well. Support Vector Machines with non-linear
kernels assigned NONE to all sentences. As XG-
Boost and Logistic Regression achieved high
F1 scores (see Figure 1), no further investiga-
tions on the performance of other algorithms were
done. A set of hyper-parameters for XGBoost was
tested using exhaustive grid search and random-
ized search but with no significant performance
increase. For the futher experiments, we selected
XGBoost with 1,000 estimators. The main idea
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Figure 1: Impact of classification models: F1 scores on 5-fold cross validation of various classification algorithms
based on a baseline binary bag-of-words representation. The black bars show the standard deviation.

behind boosting is to fit weak learners (i.e., classi-
fiers only performing slightly better than random
guessing) sequentially on modified versions of the
data subsequently combining them to produce the
final prediction. The XGBoost boosting method
used here is gradient boosting (Friedman, 2001)
with decision trees as learners. In gradient boost-
ing, Gm+1 is fitted on the residuals of Gm. Thus,
each following tree tries to improve on the training
examples on which the previous learner was weak.

In our experiments, we also tried various neu-
ral classification models based on neural net-
work, such as recurrent neural networks, e.g.
LSTM (Hochreiter and Schmidhuber, 1997) and
simpler feed-forward architectures. However,
none of them worked better than the simpler clas-
sifiers presented in this paper. We attribute this to
the size of our training dataset.

5.2 Impact of Feature Representations

The classification results of the best-performing
feature configurations in our three-class scenario
are presented in Figure 2. Each feature was tested
and evaluated using five stratified folds. The black
bars show the standard deviation. All scores were
calculated with scikit-learn’s metric module. All
features except for the LexNet (original) used the
middle part of the sentence and left the objects un-
touched. In the LexNet features, the comparison
targets were replaced with OBJECT A and OB-
JECT B, whereas LexNet (original) used the full
sentence.

Table 3: Performance (F1) of the best classifier-based
model compared to the rule-based baseline.

Model BETTER WORSE NONE ALL

Rule-based Baseline 0.65 0.44 0.90 0.82
InferSent+XGBoost 0.75 0.43 0.92 0.85

The best single feature (InferSent of the text be-
tween objects) yields an overall F1 score 3 points
above the baseline with known compared objects
positions. The worst single feature (LexNet (origi-
nal)) scores 12 points below the baseline (see Sec-
tion 5.3). Bag-of-Unigrams (F1 score 0.848) and
InferSent (F1 score 0.842) deliver roughly equal
results.

Despite the fact that only 1,519 sentences got
a path embedding for LexNet (original), the fea-
ture is able to predict some sentences correctly (F1
score of 0.75 on this subset). This indicates that
this feature setup is reasonable and would proba-
bly work well if it had a higher coverage.

To our surprise, combining feature representa-
tions did not help, i.e., we were not able to exceed
over the score of the single best representation (In-
ferSent on the sentence middle part) in any setup,
which is why we do not report results on combi-
nations.

Using the full sentence worked second best.
Adding the beginning and/or ending part of the
sentence did not increase the F1 score at all, no
matter if the same or other representation type
than the one for the middle part is used. Us-
ing the beginning and ending part alone never re-
sulted in an F1 score above the baseline. Simi-
larly, replacing or removing the objects did not
increase the score significantly. In most cases,
the difference in the F1 score between no replace-
ment/removal and the best replacement/removal
strategy was only reflected in the third or fourth
decimal place. Hence, the actual objects are not
important at all for the classification, which hints
at the domain-independence of the dataset. This
is also supported by the fact that adding the word
vectors of the comparison targets as features did
not increase the result in any configuration.

An interesting observation is that the simple
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Figure 2: Impact of feature representation: F1 scores of sentence classification model based on XGBoost. The
black bars indicate the standard deviation in the 5-fold cross validation.

bag-of-words model performs equal to or better
than the majority of the more complex models in
this setup.

5.3 Comparison to a Rule-based Baseline

As a rule-based baseline, we adapt the closest clas-
sification approach to ours introduced by Gana-
pathibhotla and Liu (2008). Given a compara-
tive sentence and a pair of the objects being com-
pared, the model decides which one is superior
based on the author’s opinion. It distinguishes
two types of comparatives: opinionated (with ex-
plicit preference: better, worse, etc.) and with
context-dependent opinions (implicit preference:
lower, higher, etc.). Classification is performed
based on the list of the opinion words consid-
ering an opinion orientation borrowed from the
work by Hu and Liu (2004). However, our task
is different in two aspects. First, we classify sen-
tences in three not two classes. Second, we iden-
tify a comparison direction, i.e., infer a superior
object, in a single sentence (and not an overall
subjective opinion) without having access to ad-
ditional context assuming extraction of the objec-
tive information. As the authors did not share their
code and data, we fetched comparative adjectives
and adverbs from open language learning web re-
sources, e.g., sparklebox.co.uk. Then we manu-
ally organized them in two lists indicating whether
the sentence’s left-hand located object superior to
the right-hand (better, cheaper, easier, etc.) one
or not (worse, harder, lower, etc.). We classify
sentences containing a keyword from the first list

Table 4: Cross-domain evaluation in terms of total F1
for all classes (best results per row in bold).

Train \Test CompSci Brands Random

CompSci 0.82 0.84 0.84

Brands 0.76 0.83 0.83

Random 0.79 0.84 0.86

(74 words in total) as BETTER, from the second list
(63 words) as WORSE and NONE with no keywords
found. We added negation rules to invert the label
if the keyword is preceded by not or the second
compared object by but.

A comparison of the best statistical classifier
with this rule-based baseline is presented in Ta-
ble 3. The statistical model substantially out-
performs the rule-based baseline for the BETTER

and NONE classes while being comparable for the
WORSE class. The overall improvement of the
statistical model over the rule-based approach is
about 3 points in terms of F1 score (0.85 as the
best achieved performance). Furthermore, note
that reported performance of the rule-based model
could be a bit inflated as building of the dataset in-
volved the use of similar cue words as those used
in this baseline (cf. Section 3) even though these
cue word lists were build independently.

5.4 Cross-domain Evaluation
Table 4 presents results of a cross-domain evalua-
tion of our models. As one can observe our model
shows remarkably high cross-domain transfer with
some out-of-domain combinations outperforming
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Table 5: Examples of XGBoost errors with the InferSent features. Confidence shows the confidence of the anno-
tators and is calculated as (judgments for majority class) / (total judgments).

Sentence Predicted Gold Confidence

1 Is Python better than Perl? BETTER NONE 0.6
2 Is Microsoft better because of Apple? BETTER NONE 1.0
3 Microsoft is the devil but Sony truly isn’t any better. WORSE NONE 1.0
4 Python is much better suited as a ”glue” language, while Java is better character-

ized as a low-level implementation language.
BETTER NONE 1.0

5 Its Azure PaaS/IaaS platform hasn’t overtaken Amazon yet in market share, but
Microsoft has enjoyed nine straight quarters of growth at 10 percent or better

NONE WORSE 1.0

6 arrrggghh...Python is a terrible language - only Perl sucks worse. WORSE BETTER 1.0
7 Good to see again a Renault ahead of a Ferrari. NONE BETTER 1.0

in-domain training, e.g., CompSci-Brands. While
a substantial drop is observed for a few other do-
main pairs, e.g., Random-CompSci, the perfor-
mance is still well above the majority class base-
line suggesting that some knowledge transfer hap-
pened even in these cases and comparative argu-
mentation is not highly domain-dependent.

Similarly, we applied the rule-based baseline
to three domains independently and obtained F1
of 0.80 for CompSci, 0.81 for Brands and 0.84 for
Random domains.

5.5 Error Analysis

The WORSE appeared to be the hardest class to
recognize: 1,311 sentences were incorrectly clas-
sified. We look at comparing the performance
of InferSent and LexNet (customized) thoroughly.
Both features caused the same errors on 607 sen-
tences. The InferSent feature made 220 additional
errors, while the LexNet feature made 484. Sur-
prisingly, the majority of errors was made on sen-
tences with a high annotation confidence: 425 of
the shared errors were made on sentences with
a confidence of one. InferSent made 156 er-
rors on highly confident sentences, while LexNet
made 356. Examples of errors made by the In-
ferSent feature are presented in Table 5.

The first two sentences look comparative, but
they are questions. Despite annotation of ques-
tions as NONE as explicitly stated in the guidelines,
InferSent frequently classified questions as com-
parative. Sentences three and four are compara-
tive, but they have no clear “winner” of the com-
parison. The guidelines instructs that only sen-
tences with obvious “winners” should be labeled
with BETTER or WORSE. InferSent was not able to
learn this restriction. Sentence six has three nega-
tive words in it. Sentence seven is hard to classify,
as it does not contain any comparative cue word.

The LexNet feature made errors in fairly simple
sentences like Right now Apple is worse than Mi-
crosoft ever was. While InferSent’s errors can be
coarsely grouped, the errors made by LexNet seem
to be more random. We assume that the amount of
training data for the neural network encoder is not
sufficiently large. However, the overall result of
LexNet indicates that the encoder trained on more
data would likely yield satisfactory results. The
performance for LexNet path embeddings shows
that this is a reasonable way to encode sentences.
The original setup found only paths for 26% of the
sentences, yet it yielded an F1 score 8 points above
the baseline. The customization made it even more
powerful. While we expected that a combination
of LexNet features and one of the other features
like InferSent would be beneficial, as they encode
different information (lexical and syntactical), this
turned out to be not the case.

We explain the relatively low performance of all
models on the WORSE class by the fact that peo-
ple tend to more often refer to use lexical BETTER-
constructions (when the firstly mentioned com-
pared object is favored) than WORSE-constructions,
similarly to many opinion mining datasets, where
the positive class is observed more frequently. Be-
sides, the tested models do not use explicit repre-
sentations of negations, which may lead to a con-
fusion of the BETTER and WORSE classes.

6 Conclusion

We tackle the task of identifying comparative sen-
tences and categorizing the contained preference.
Comparisons are a special kind of argumenta-
tive premise and can be deployed in construct-
ing pro/con argumentation to support an informed
choice. As our contributions, we (1) create the
CompSent-19 corpus of 7,199 sentences from di-
verse domains (27% of the sentences being com-
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parative and having an annotated preference direc-
tion), and (2) we evaluate several feature-based su-
pervised approaches on our new corpus.

In our experiments, it turned out that the words
between two compared items in a sentence are the
most important for detecting comparisons and cat-
egorizing the preference direction.

The best classifier has already been integrated
in a system that is able to efficiently mine
comparative sentences from web-scale sources
and to identify the direction of the compar-
isons: CAM—the comparative argumentative ma-
chine Schildwächter et al. (2019). CAM mines
sentences from the web-scale Common Crawl and
uses them to argumentatively compare objects
specified by a user (e.g., whether Python is better
than MATLAB for NLP).8

Promising directions for future work are ex-
ploiting neural classification approaches, integrat-
ing features based on contextualized word repre-
sentations (Peters et al., 2018; Devlin et al., 2018),
and better handling direction shifters like nega-
tions and complex implicit syntactic comparative
constructions.
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Matthias Schildwächter, Alexander Bondarenko, Ju-
lian Zenker, Matthias Hagen, Chris Biemann, and
Alexander Panchenko. 2019. Answering compara-
tive questions: Better than ten-blue-links? In Pro-
ceeding of 2019 Conference on Human Informa-
tion Interaction and Retrieval (CHIIR ’19), Glas-
gow, United Kingdom.

Vered Shwartz and Ido Dagan. 2016. The roles of path-
based and distributional information in recognizing
lexical semantic relations. CoRR, abs/1608.05014.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2389–2398, Berlin, Germany. Associa-
tion for Computational Linguistics.
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Abstract

In data ranking applications, pairwise anno-
tation is often more consistent than cardi-
nal annotation for learning ranking models.
We examine this in a case study on rank-
ing text passages for argument convincing-
ness. Our task is to choose text passages that
provide the highest-quality, most-convincing
arguments for opposing sides of a topic. Us-
ing data from a deployed system within the
Bing search engine, we construct a pairwise-
labeled dataset for argument convincingness
that is substantially more comprehensive in
topical coverage compared to existing pub-
lic resources. We detail the process of ex-
tracting topical passages for queries submit-
ted to a search engine, creating annotated sets
of passages aligned to different stances on a
topic, and assessing argument convincingness
of passages using pairwise annotation. Using
a state-of-the-art convincingness model, we
evaluate several methods for using pairwise-
annotated data examples to train models for
ranking passages. Our results show pairwise
training outperforms training that regresses to
a target score for each passage. Our results
also show a simple ‘win-rate’ score is a bet-
ter regression target than the previously pro-
posed page-rank target. Lastly, addressing the
need to filter noisy crowd-sourced annotations
when constructing a dataset, we show that fil-
tering for transitivity within pairwise annota-
tions is more effective than filtering based on
annotation confidence measures for individual
examples.

1 Introduction

In online searches, results are typically presented
to users ranked only by the relevancy of the re-
sults to the query. Search engines typically learn
such relevancy through the positive reinforcement
of user clicks. However, when queries address
topics with multiple perspectives, some of which

may be polarizing and divisive, search result click-
through may reinforce biases of users contribut-
ing to the digital filter bubble or echo chamber
phenomena (Barberá et al., 2015; Vaccari, 2013;
Jamieson and Cappella, 2008; Wallsten, 2005).

To counter the filter bubble effect, search en-
gines may seek to actively provide diverse results
to topical queries (Yom-Tov et al., 2014), or even
explicitly present arguments on different sides of
an issue (Stab et al., 2018). In such scenarios, it is
desirable to not only consider the relevancy of the
diverse search results, but also their quality and
convincingness. In our work, we seek to rank a
collection of text passages by their argument con-
vincingness, for use in Bing’s multi-perspective
search feature that presents arguments on differ-
ent sides of a topical issue requested by a search
query. An example of our use case and the goal
of the model we aim to construct are presented in
Table 1.

Habernal and Gurevych (2016) formally intro-
duced the task of predicting argument convinc-
ingness to the language processing community by
providing the first annotated corpus1 (the UKP
dataset), as well as providing initial experimental
results on the dataset. The UKP dataset is anno-
tated in a pairwise fashion: given two arguments
with the same stance toward an issue, label which
argument is more convincing. The implementa-
tion of pairwise annotation for this dataset is theo-
retically and practically grounded.

Motivated by the pioneering work of Thurstone
(1927), pairwise labeling is a popular method for
annotating items for attribute value (Heldsinger

1 Although the ChangeMyView (CMV) (Tan et al., 2016)
dataset had been published several months earlier, we believe
the argumentation involved in the CMV dataset is more along
the lines of debate and persuasion because commentators are
trying to rebut the initial opinions and assertions made by
the original poster. The same also holds for the dataset from
Durmus and Cardie (2018).
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Query: reasons why nafta is good
Passages with a “Pro” stance Passages with a “Con” stance
Candidate 1: NAFTA has six advantages. First,
it quadrupled trade between Canada, Mexico, and
the United States. That’s because the agreement
eliminated tariffs. Trade increased to $1.14 tril-
lion in 2015. Second, it lowered prices. The
United States imports Mexican oil for less than
before the agreement.

Candidate 1: Is NAFTA a Bad Deal? The North
American Free Trade Agreement (NAFTA) has
come under fire recently, with some labeling it
a disaster and claiming that it is the driving force
behind the relocation of American firms like Ford
Motor Company to Mexico.

Candidate 2: Because it helps in political inter-
ests. NAFTA is meant to lower tariffs and there-
fore create pro business alliances between the
three signing nations. This allows for the U.S.
to buy products cheaper from Canada and tears
down the barriers to trade such as tariffs fees etc.

Candidate 2: Best Answer: see... the problem
is... people who support NAFTA only compare it
to either all out free trade... or no trade. trade is
good and needed... but that doesn’t mean it has to
be, or should be FREE trade... so stop with these
false comparisons of we have to trade...

Table 1: The table above shows the use-case for a ranking model for convincingness. Suppose a user has typed the
query ‘reasons why nafta is good’. Normally, this query will elicit links to texts that reflect only a positive stance
toward the ‘nafta’ issue. Alternatively, a system can be designed to show arguments from both sides of the issue.
In our system, we seek to select and present one passage to show for each side of the issue. Given passages that
have been mapped to the pro and con sides of the issue, we will use our model to choose the best passage to show
for each side of the issue. The above example illustrates a situation with two passage candidates for each of the
pro/con sides, and our model needs to choose the most convincing one to display for each side.

and Humphry, 2010; Loewen et al., 2012). Re-
cently, Shah et al. (2014) have conducted a suite
of annotation experiments in order to empirically
validate the belief that pairwise annotation is faster
and more accurate than cardinal annotation for
comparative tasks2. This paper presents a prac-
tical case study of a scenario where we have anno-
tated data in a pairwise fashion and wish to train a
model for ranking purposes.

The base model we use for predicting argu-
ment convincingness is an extension of the sum-
of-embeddings model proposed by Potash et al.
(2017). Our base model records state-of-the-art
performance on the ranking subtask from the UKP
dataset. Building on the base model, we explain
two primary methods for going from pairwise data
to a general ranking model: 1) Train a model
that independently produces scores for each pas-
sage using a pairwise training paradigm to min-
imize a cross entropy objective function; 2) As-
sign real-valued scores to each passage, and train
a model with a regression objective function to
minimize the model’s error against these scores.
The second approach requires a method to pre-
generate the real-valued passage scores used as

2In cardinal annotation, each individual example is as-
signed a score from a scale to signify the intensity of a given
attributed being annotated.

the regression targets using only pairwise annota-
tions. Towards this secondary goal, we test two
approaches: 1) Following Habernal and Gurevych
(2016), we generate PageRank (PR) (Page et al.,
1999) scores using directed graphs derived from
the labeled pairs; 2) We compute a simple ‘Win-
Rate’ (WR) percentage based on how often a pas-
sage is rated more convincing against its competi-
tor passages.

In order to test the robustness of the proposed
techniques for using pairwise-labeled data to cre-
ate a ranking model, we construct a new dataset for
convincingness with a superior coverage of topics
compared to the UKP dataset, which only has pas-
sages for 16 topics and roughly 1k total passages.
In comparison, our dataset covers 3,234 topics,
with roughly 30k total passages. The results of
experiments on the large-scale dataset show that
the best method for training a ranking model is to
use the pairwise labels directly. Secondly, regard-
ing the regression-based models, regressing to WR
is better than PR, and even competitive with pair-
wise training. Finally, filtering data based on la-
bel confidence can actually hurt performance, al-
though it can be beneficial to weight a pairwise
model based on label confidence. Alternatively,
removing query-passage sets where cycles appear
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in the directed graphs induced by the labels of pas-
sage pairs is a preferred method for data-filtering
in our case study.

2 Related Work

In terms of predicting argument convincingness,
only four authors have published results on the
UKP dataset (Habernal and Gurevych, 2016; Cha-
laguine and Schulz, 2017; Potash et al., 2017;
Simpson and Gurevych, 2018), with Potash et al.
(2017) and Simpson and Gurevych (2018) post-
ing state-of-the-art results on the pairwise classi-
fication3 and ranking tasks, respectively. Simp-
son and Gurevych’s model uses Gaussian Pro-
cess Preference Learning (Chu and Ghahramani,
2005), which learns a mapping from input passage
representations to real-valued scores.

Related to our use of label confidence to
weight training examples, solving problems in
NLP with models that leverage annotator agree-
ment/confidence has previously been explored.
Plank et al. (2014) and Alonso et al. (2015) use
the information from individual annotations on ex-
amples to improve sequential (part-of-speech tag-
ging) and structural (dependency parsing) tasks.
Previously, Beigman and Klebanov (2009) had
shown theoretically that noise from ambiguously-
annotated examples are more harmful to certain
learning models, namely the Voting Perceptron al-
gorithm (Freund and Schapire, 1999).

Lastly, methods for ranking from pairs is a rele-
vant research area for our work. Chen et al. (2013)
adopt an active learning framework for the popu-
lar Bradley-Terry model (Bradley and Terry, 1952)
in order to minimize the amount of annotations
required to train a ranking model from pairwise
data. Negahban et al. (2016) propose an algo-
rithm, Rank Centrality, that works on a graph in-
duced by pairwise annotations where node scores
come from their stationary probability under a ran-
dom walk. Chen and Suh (2015) improve upon
Rank Centrality by introducing an algorithm that
is specifically intended to recover the top k rank-
ings via spectral initialization and continued re-
finement over the pairs with a maximum likeli-
hood estimation.

3See Section 4.1 for more details of this model, as it is
the basis for our approach for modeling argument convinc-
ingness. Moreover, the model from Simpson and Gurevych
was not yet public as we were developing our model.

3 Dataset

Throughout the paper, we will refer to elements of
our dataset using terms that form a hierarchy. At
the top level, we use the term topic. A topic is
an idea/issue devoid of a specific stance/assertion.
Examples of topics are “coffee”, “nafta”, “mar-
garine”, and “fluoride”. Within each topic are
queries, which are search statements/questions
that possess a specific thesis/stance with regard to
its topic. For the topic “coffee”, a query may be “is
coffee good for you”, which takes as the assertion:
“coffee is good for you”. An alternative query may
be “is coffee bad for you”. The third element of
the hierarchy is a passage. A passage exists with
respect to a query, and argues the position that is
present in a query. Each query has multiple pas-
sages, all with the same stance toward a topic. In
this section we describe the process of going from
raw search data to a cleaned and annotated dataset
with passages of the same topic and stance anno-
tated for argument convincingness. The reason we
want to have data annotated in this manner is it re-
flects the context in which we would plan to use
the proposed model: we make the assumption that
the input passages to be ranked are all on the same
side of a stance related to a given issue, which, in a
practical scenario, has been dealt with by upstream
processing.

3.1 Dataset Creation

In order to test the utility of a convincingness
model over a large variety of topics we created a
dataset with larger topical coverage compared to
the UKP data. We seeded the process with data
collected for Bing’s multi-perspective search fea-
ture, which was designed to show two short pas-
sages arguing for opposing stances of an issue ex-
pressed by a user query submitted to the system
(e.g., “is coffee good for you”). The dataset con-
sists of topic, query, passage triples. Each query
conveys a pro or con sentiment for the expressed
topic. Multiple potential passages are matched
with each topic based on the Bing search engine’s
relevancy rankings with each passage assigned to
the pro or con side of the topic based on a senti-
ment analysis classifier trained for the task. The
passages themselves are snippets of text that have
been scraped from the Web. For each query in a
triplet, we have also automatically determined a
paired query expressing the opposing stance (e.g.,
“is coffee bad for you”) which we use to help
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Figure 1: For stance annotation, workers are presented
with a passage and a query pair, where each query is
meant to reflect either a positive or negative stance to-
ward an issue. The worker must choose which query
best aligns with the passage.

validate the stance of passages as detailed be-
low. The initial seed set contained 95,318 triples
across 18,864 unique queries covering 3,439 top-
ics. The initial annotations of the pro/con stances
of queries and passages of the data available from
the pre-existing system were created using auto-
matic means (e.g., a sentiment analysis model) and
were hence errorful. Additionally, no assessment
of the convincingness of the passages had been
conducted. Thus, we performed a two-stage man-
ual annotation process on the dataset to (1) gen-
erate ground truth stance labels for query/passage
pairs, and (2) generate pairwise convincingness
assessments of passages associated with the same
topic and stance.

3.2 Stance Annotation

Passage stance was determined by crowd work-
ers judging which query from a positive-negative
pair best aligns with a given passage. Workers
also had the option of labeling that neither query
aligns (i.e., the passage does not express a specific
stance), or that both queries align with the passage
(i.e., the passage provides arguments for both sides
of the issue). To ensure that the query pairs them-
selves are valid, a fifth option specifying invalidity
was provided for instances when a query is off-
topic from the passage, is ambiguous in meaning,
expresses multiple stances, or if both queries hold
the same stance. Figure 1 shows the stance an-
notation layout. The goal of stance annotation is
to identify pairs of passages that argue the same
stance on a topic, as expressed by a query.

To contribute to the dataset, workers first had to
read accompanying guidelines and examples then
pass a qualification test with a grade of 70%. This
test consisted of ten judgements made on passages
pre-determined to represent two of each of the five
available options. Feedback on the correct option
was given after each judgement. If workers failed
the initial qualifying set, they were provided with a
second attempt on ten new instances to encourage
learning and skill development.

Qualified workers who later hit an average
speed less than six seconds per judgement4, com-
pared to the overall average of 16 seconds, or who
had a low agreement score with other annotators,
were removed from the task and their work was
re-assigned to others. To prevent worker fatigue
and ensure a wide breadth of participation, indi-
vidual workers were prohibited from performing
more than 10% of the available annotations tasks.
The average number of annotations provided per
worker was 1,178. Using this approach, each
raw data point was annotated three times from a
pool of 223 workers. The process yielded a total
of 71,840 passage pairs associated with the same
stance on the same topic.

3.3 Convincingness Annotation

Comparisons on passage convincingness are per-
formed by workers judging which passage, from
a pair with the same stance toward an issue, is
more convincing. Refer to Figure 2 for the lay-
out of the convincingness annotation. Workers
are provided with tips on how to determine con-
vincingness, such as evaluating topic deviation,
use of facts, and citation of authority figures. To
force workers to make a decision, workers were
not given the option to rate the passages as equally
convincing. Workers are instructed to consider the
passage coherency and writing quality in the event
of a tie in convincingness. Each of the 71,840
passage pairs identified during the stance annota-
tion was annotated for convincingness by five dif-
ferent workers. We again applied techniques to
pre-qualify workers and remove workers produc-
ing low-quality work.

Workers for this stage were also required to read
guidelines and examples before passing a quali-
fication test, though with an increased grade re-
quirement of 80%. The test was composed of ten

4If a worker goes this speed, or faster, they are believed to
be clicking answers randomly or spamming.
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Figure 2: For convincingness annotation, workers are
presented with two passages, with the same stance to-
ward a topic (the search query), and are asked to label
which passage is more convincing.

judgements, split evenly between easy and hard
levels of difficulty, to be made on queries with
passage convincingness predetermined. Feedback
on the correct option was given after each judge-
ment again and another attempt was provided in
the event of failure, however this time without
feedback. Workers whose average speed mea-
sured less than six seconds per judgement com-
pared to the overall average of 20 seconds or who
had low agreement scores with other annotators
were blocked with their work being redone by the
remaining annotators. The total number of judge-
ments made per worker in this stage was limited
to 5% of the total annotations with 12 reaching the
limit and an overall average of 907 annotations per
worker. A total of 71,840 query-passage pair sets
were annotated five times each from a pool of 396
workers.

3.4 Constructing Passage Graphs
One key term for our work is Passage Graph,
which is the result of using binary annotations of
passage pairs to generate a directed graph. Mir-
roring the process from Habernal and Gurevych
(2016), a directed graph is constructed from all
the passage pairs that have been annotated with the
same topic-stance (query). The nodes of the graph
represent the individual passages associated with
a topic-stance. For a given passage pair (A,B),
if passage A is more convincing than passage B
(based on the combined assessments from multi-
ple annotators), a directed edge from node A to
node B is created. Assuming that every possible
passage pair has been annotated, the initial pas-

sage graph will be complete.

4 Ranking Model for Convincingness

In this section we describe our base model for pre-
dicting argument convincingness, as well as the
various approaches for using pairwise-labeled data
to train a model for ranking passages. We imple-
ment all our models in TensorFlow (Abadi et al.,
2016) and tokenize text using NLTK (Bird and
Loper, 2004).

4.1 Base Convincingness Model

The base model we use for predicting argument
convincingness is an extension of the sum-of-
word-embedding approach used by Potash et al.
(2017). Their model uses pretrained GloVe word
embeddings (Pennington et al., 2014), and, instead
of continuing to update the word embedding pa-
rameters during training, the model learns a fully-
connected layer that projects the embeddings into
a new embedding space. By doing so, the original
300-dimensional embeddings are transformed into
a 100-dimensional space. The model then sums
the projected word embeddings to create a single
vector representation of the full passage.5

We extend the original model by adding further
capacity in the form of a Feed Forward Neural
Network (FFNN) after summing the word embed-
dings. Specifically, we add three additional layers
(the original model had a single layer after sum-
ming embeddings) of sequentially decreasing size,
activated by the ReLU function: these layers have
dimensions of 32, 16, 8, and 1. Thus, there is a
total of four layers after creating the passage rep-
resentation, where the last layer produces a single
score.

Aside from the strong performance of this
model, the fact that it only requires pretrained
word embeddings as an external resource makes
it appealing, as it increases portability and short-
ens the preprocessing pipeline. In comparison,
the linguistic feature proposed by Habernal and
Gurevych (2016) require substantial preprocess-
ing, including part-of-speech tagging, named-
entity recognition, and sentiment analysis.

Using the publicly available UKP convincing-
ness dataset from Habernal and Gurevych (2016),

5Simple sum-of-word-embeddings has been shown to be
a strong (almost unreasonably so) approach for modeling
multi-token sequences (Conneau et al., 2017; Joulin et al.,
2017).

150



Model Pearson’s r Spearman’s ρ Kendall’s τ
GPPL (linguistic+word embedding features) .44 .67 .50
Sum-of-Word-Embeddings+FFNN (our model) .48 (±.013) .69 (±.003) .52 (±.002)

Table 2: Results on the UKP argument convincingness dataset (Habernal and Gurevych, 2016) from our model
(Sum-of-Embeddings+FFNN) and Simpson and Gurevych (2018) (GPPL), which had previously been state-of-
the-art. Note that our model uses only pretrained word embeddings as features, whereas the GPPL uses pretrained
word embeddings plus a linguistic feature space of 32,010. Our numbers are the average across eight identical runs
(standard deviation in parentheses).

we test the effectiveness of our base convincing-
ness model against the the current state-of-the-art
(Simpson and Gurevych, 2018): Gaussian Pro-
cess Preference Learning (GPPL) with word em-
beddings and linguistic features (of dimensional-
ity 32,010) used to represent passages. The eval-
uation uses a leave-one-topic-out paradigm, mea-
sures correlation between our model’s predictions
and the gold standard scores, and averages the cor-
relation scores across topics. Results of our exper-
iments are presented in Table 2 and show that our
model achieves a new state-of-the art on the con-
vincingness ranking subtask across all three corre-
lation measures, which were the metrics used by
previous researchers on the dataset.

4.2 Methods for Ranking Model

Although Habernal and Gurevych (2016) used PR
over directed graphs induced from the pairwise
annotations to create unique convincingness
scores for single passages within a set, we posit
that such a methodology might be sub-optimal
for training a ranking model. We address two
primary concerns with this approach, and propose
solutions, which we detail below.

Train ranking model directly with pair-
wise data Regressing to any target induced
by pairwise-labeled data introduces a system
bias based on how the real-valued scores are
calculated. It may be better to use the pairwise an-
notations directly and train with an objective akin
to RankNet (Burges et al., 2005). Thus, our base
ranking model produces scores independently for
each passage in a pair, with the pair of scores
then normalized by the softmax function. The
softmax outputs become the input probabilities
for optimizing a two-class classification function
with cross-entropy, where the one-hot target is the
argument annotated as more convincing. At test
time, our base model then independently produces

a global convincingness score for each passage.

Optimize regression based on ‘Win-Rate’,
not PR Assuming we keep the regression objec-
tive for training, is there a better way to induce
real-valued scores for individual passages? Our
training data set, despite its wide topical coverage,
only averages four passages per query, with
many queries only having two passages. When
running PR on a graph with two nodes, directed
from one to the other, the node scores become
roughly 2

3 and 1
3 . A simpler, intuitive method

for scoring passages would be to assign 1 to the
more convincing passage, and 0 to the other.
Thus, as an alternative to PR we propose the
Win-Rate (WR) of a passage as the regression
target. We start with our dataset of passage pairs
with a single label assigned to the passage that is
more convincing (produced by the MACE (Hovy
et al., 2013) algorithm taking into account the
five raw annotations). We calculate the WR for
an individual passage by dividing the number of
times a passage is labeled more convincing than
another passage by the number of passage pairs
it appears in. The scores produced by WR are
normalized between 0 and 1 but have a higher
variance compared to PR because they do not
reflect a probability distribution.

Consequently, we propose to evaluate three
different methods of leveraging pairwise-labeled
data for training a ranking model: 1) Train
directly with pairwise data using a classification
objective; 2) Optimize a regression model for
WR; 3) Optimize a regression model for PR6.

5 Experimental Design

In this section we describe the details for eval-
uating the methods we propose in Section 4.2,

6We use the Python package NetworkX (Hagberg et al.,
2008) to create graphs and calculate PR scores.
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namely the approaches for filtering the fully anno-
tated dataset, as well as creating a properly curated
train/test split.

5.1 Creating Train/Test Split
A goal of the convincingness model is to be ag-
nostic to an argument’s topic, i.e. the model
should perform well on passages even for top-
ics not seen during training. Thus, we create a
train/test split not over individual examples, but
over topics (where a topic has an associated set
of queries, and each query has an associated set of
passages). We assign 80% of topics to the training
set and the remaining 20% to the test set.

For evaluation, we require gold-standard rank-
ings for passages in a query set. First, we filter
the individual examples in the test set by anno-
tator confidence, using a MACE entropy thresh-
old of .95. Next, to ensure no ambiguity in the
resulting ranking, we filter all queries that have
cycles in their directed passage graphs induced
from the pairwise MACE scores7 (we also re-
move graphs that have become disconnected due
to MACE filtering removing certain edges). To
further ensure that the resulting passage rankings
are gold-standard, despite not being set-ordered
during annotation, we only keep queries whose
passage rankings, determined by both WR and
longest walk on the passage graphs, are identi-
cal. The resulting gold-standard test set contains
659 queries with an average of 2.23 passages per
query.

5.2 Filtering/Weighting Training Data
Although the rigorous filtering process for creat-
ing the gold-standard test set maintains that the
ranks created by sorting on WR generate an un-
ambiguous ordering, doing so reduces the amount
of data available. The question then becomes, is
it better to keep data with noisy labeling in or-
der to increase the amount of data available for
training? In order to evaluate the effect of filtering
data in the training set, we experiment with filter-
ing data based on two methods: (1) removing in-
dividual annotated passage pairs with MACE en-
tropy score below 0.958, and (2) removing query-

7For example, if we have labeled pairs for passages a, b, c,
where a is more convincing than b, b is more convincing than
c, and c is more convincing than a, then the labeled graph
contains a directed cycle.

8This process remains the same regardless of whether a
model trains on individual passage examples for regression
training or passage pairs for pairwise training. However, this

passage sets if there are cycles present in the
passage-graph. Because MACE assigns entropy to
each label given to an annotated pair, we also ex-
periment with weighting the training cost of each
training example in the pairwise model using its
MACE entropy. Specifically, since the passage
rated as more convincing has a MACE entropy be-
tween 0.5 and 1, we set the training cost weight to
(2∗entropy)−1 producing a weight in the interval
(0,1).

6 Results

The results of our experiments are shown in Ta-
ble 3. For each query-passage set in the test set
we predict scores for each passage individually,
and evaluate the scores against the gold-standard
ranking, as described in Section 5.1. We calculate
Kendall’s tau and the top 1 accuracy (i.e., the pro-
portion of passage sets where the most convincing
passage in the set is ranked first)9,10. We average
the scores on each query across the test set to pro-
duce a single number for each metric. We compare
the results of our models with the results of a ran-
dom baseline and the relevancy score assigned by
the search engine to the original passage, query,
topic triple (see Section 3).

An initial result of our experiments is that train-
ing a pairwise model leads to better ranking per-
formance compared to regressing to a target score
for each passage. Furthermore, the use of weight-
ing in training for the pairwise model makes the
model more robust with respect to different fil-
tering scenarios of the training data, though we
achieve the best correlation with gold standard
without using the weighting. Indeed, without
weighting during training, the pairwise model
only outperforms regression to WR, in terms of
correlation to gold standard, in one out of four
scenarios of training data filtering. Alternatively,
when training models with the complete dataset,

procedure affects the amount of data for these types of mod-
els differently. For example, given N passages, there are
N choose 2 pairs. However, if one pair (edge in the pas-
sage graph) is removed due to MACE filtering, there still re-
mains N passages for regression training (assuming the pas-
sage graph hasn’t become disconnected), but only (N choose
2)-1 passage pairs for pairwise training.

9We do not use normalized discounted cumulative gain
(nDCG) (Järvelin and Kekäläinen, 2002) because our passage
sets are so small. For example, when the set only has two ele-
ments, predicting the inverse of the gold-standard still yields
an nDCG@2 of 0.63.

10Additionally, we do not use Pearson or Spearman corre-
lation, which we used in the UKP experiments, because they
are not classical ranking metrics.
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Training Objective Cycles Filtered MACE Filtered % Filtered Kendall’s τ Top1
Pairwise No No 0% .419 .684
Pairwise No Yes 43% .436 .692
Pairwise Yes No 61% .464* .701
Pairwise Yes Yes 48% .431 .690
Pairwise, Weighted No No 0% .445 .690
Pairwise, Weighted No Yes 43% .451 .701
Pairwise, Weighted Yes No 61% .458 .704*
Pairwise, Weighted Yes Yes 48% .455 .700
Regression to PR No No 0% .408 .677
Regression to PR No Yes 13% .411 .676
Regression to PR Yes No 40% .392 .657
Regression to PR Yes Yes 18% .399 .669
Regression to WR No No 0% .442 .688
Regression to WR No Yes 13% .445 .692
Regression to WR Yes No 40% .456 .695
Regression to WR Yes Yes 18% .431 .684
Random - - - .000 .447
Relevancy Ranking - - - .204 .585

Table 3: Results of ranking experiments on our newly-annotated dataset. Bold indicates the best performance for
a given model on a given evaluation metric, and * indicates the best result across all models.

i.e. not using any filtering, regressing to WR is
better than pairwise training without weighting.

In terms of regression targets, WR is shown to
be a superior objective compared to PR. Further-
more, this holds across all variations of filtering
the training data. In fact, PR exhibits its worst per-
formance under the filtering constraints where WR
performs the best. These results show that even
if one has decided on a regression objective, the
way in which one calculates the scores to which
the model fits is important.

When examining the effects of data filtering,
combining strategies is not always better. Our
results show that it is better to filter out whole
passage sets that have cycles, as opposed to fil-
tering out individual examples based on MACE
score. However, if MACE filtering has already
been done, it is generally better to leave cycle-
inducing passage sets in the training data. These
results indicate that there may be a fine line be-
tween removing noise and removing useful infor-
mation. There is also an interesting relationship
between MACE filtering and cycle filtering. We
observe that filtering for cycles after initially filter-
ing by MACE results in more data being left, when
compared with solely filtering by cycles. This im-
plies that MACE entropy scores are able to predict

which labels may lead to cycles in a passage graph.

6.1 Convincingness versus Relevancy
Regarding the actual utility of ranking passages by
argument convincingness, as opposed to just using
topical relevancy, our results show that in fact con-
vincingness and relevancy are separate attributes
when it comes to grading a passage. Although
the use of relevancy ranking scores results in more
convincing passages being selected than random
guessing, the relevancy model does not predict ar-
gument convincingness as effectively as a model
trained specifically to do so. In other words, when
constructing a search engine for arguments, the
most topically relevant passage may not be the
most convincing with regard to its stance on an
issue. Future work can evaluate the best practice
for combining these different attributes for the best
user experience.

7 Conclusion

Our work provides a practical case study in the
use of pairwise-annotated data to train a model
for ranking passages with respect to their argu-
mentative convincingness. We describe an anno-
tation process that takes the raw output of a search
engine and transforms the data into pairs of pas-
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sages with the same stance toward an issue, anno-
tated for which passage is more convincing. We
then construct a base model for predicting argu-
ment convincingness that posts state-of-the-art on
a publicly available dataset. We conclude with
a comprehension evaluation of different ranking
models using our newly-annotated dataset. Our
results show that a pairwise model trained with
cross-entropy objective provides the best perfor-
mance, though regressing to a simple Win-Rate
target can also perform competitively.
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Abstract

Stance detection plays a pivot role in fake news
detection. The task involves determining the
point of view or stance – for or against – a
text takes towards a claim. One very important
stage in employing stance detection for fake
news detection is the aggregation of multiple
stance labels from different text sources in or-
der to compute a prediction for the veracity of
a claim. Typically, aggregation is treated as a
credibility-weighted average of stance predic-
tions. In this work, we take the novel approach
of applying, for aggregation, a gradual argu-
mentation semantics to bipolar argumentation
frameworks mined using stance detection. Our
empirical evaluation shows that our method re-
sults in more accurate veracity predictions.

1 Introduction

The problem of fake news has existed from time
immemorial. But in recent times, both the rise
of social media as the go-to platform for receiv-
ing news updates and a series of significant politic
elections events, the results of which are specu-
lated to have been influenced by misinformation,
has culminated in the phrase being pushed to the
forefront of our consciousness. It is widely ac-
knowledged (e.g., see (Lazer et al., 2018)) that
fake news is an important problem, and that at-
tention should be directed to tackle it.

Fake news is a particularly challenging prob-
lem, one that consists of a number of sub-
problems, and one for which many approaches
have been proposed (e.g., see (Zhou et al., 2019)).
Generally fake news detection amounts to collat-
ing evidence and counter-evidence from various
sources in order to make an assessment regarding
the veracity of a given claim, e.g., as in the Fact
Extraction and Verification (FEVER) shared task
(Thorne et al., 2018).

Claim
true or false

Text NText 1 . . .

disproved,
verified,
neither

disproved,
verified,
neither

Figure 1: In veracity assessment a true/false label can
be acquired by aggregating various texts that verified
and disproved the target claim.

Veracity assessment is typically formulated as
a 3-class problem where we aim to arrive at a
value for the factuality of a claim, which is based
on the stances of Texts 1, . . . , N (see Figure 1).
These texts could be headlines, articles, and even
other claims. One of the tasks underpinning the
prediction of factuality is stance detection. It in-
volves examining agreement expressed by a text
in relation to a claim. The text could be a head-
line (Ferreira and Vlachos, 2016), a topic (Mo-
hammad et al., 2016) or a lengthier text fragment
(Pomerleau and Rao, 2017). Stance detection can
be thought of as a two-part task: we first aim to de-
termine if the text and claim are sufficiently close
with respect to their subject matter, and then, once
relatedness of the text and claim is established, we
want to know whether the text takes a favourable
or unfavourable view of the claim.

The intuition behind the use of stance detection
for fake news analysis is that the trustworthiness
of a claim is strongly tied to the level of agreement
expressed either for or against it in other texts, par-
ticularly the agreement or disagreement expressed
by sources with high credibility. For that rea-
son, we should be able to aggregate these disjoint
stance valuations in order to arrive at a prediction
for the veracity of the claim, as described by Con-
forti et al. (2018).
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In this paper we draw inspiration from uses
of relation-based argument mining (Carstens and
Toni, 2015) to generate and evaluate bipolar
argumentation frameworks (BAFs) (Cayrol and
Lagasquie-Schiex, 2005) in order to perform clas-
sification tasks (e.g., in (Cocarascu and Toni,
2018), for deception detection). In the same
spirit, we propose and use a stance detection
classifier to generate BAFs and evaluate argu-
ments therein with the existing DF-QuAD grad-
ual semantics (Rago et al., 2016) in order to
assess veracity of news against evidence. We
show empirically, using a stance detection classi-
fier built from the Fake News Challenge dataset
(Pomerleau and Rao, 2017) and tested on the Ru-
mourEval dataset (Derczynski et al., 2017), that
DF-QuAD performs competitively in comparison
with a standard stance aggregation method using
a credibility-weighted average of stance predic-
tions. The aggregation method resulting from de-
ploying DF-QuAD, unlike the standard aggrega-
tion method, considers also the dialectical rela-
tionships between different evidence and counter-
evidence texts in order to gauge the veracity of tar-
get claims.

2 Related Work

Stance detection can be framed as a four-way clas-
sification problem, as in the Fake News Challenge
(Pomerleau and Rao, 2017), where it is aimed at
identifying, in pairs consisting of headlines and ar-
ticle bodies, whether the texts are UNRELATED,
or if the article body AGREES, DISAGREES, or
DISCUSSES the headline. The last label signifies
that the two texts are related but no stance (for or
against) exists from the body to the headline. The
RumourEval rumour verification task in SemEval
2017 (Derczynski et al., 2017) similarly includes
a stance detection sub-task and uses data in the
format of pairs but labels stances as DENY, SUP-
PORT, COMMENT and QUERY. In this paper, we
see stance detection as a three-way classification
problem, as summarized in Figure 2(a), assuming
that relatedness has already been ascertained. This
is in line with other work, notably in the EMER-
GENT project1, using three labels FOR, AGAINST

and OBSERVING (Ferreira and Vlachos, 2016).
Given the almost parallel stance labels, when

restricted to three, between Fake News Challenge
and RumourEval, we choose to develop classifiers

1http://www.emergent.info/about

for stance detection using the former and verify
them on the latter, for veracity prediction.

Claim

Text NText 1 . . .

disagree,
discuss,
agree

disagree,
discuss,
agree

(a) Stance Detection

Claim

Text NText 1 . . .

attack,
neither,
support

attack,
neither,
support

(b) Relation-based Argument Mining

Figure 2: Labels for relation-based argument mining,
stance detection and veracity assessment. The labels in
bold are those learnt from the task.

A number of techniques have been employed
for the purpose of building stance detection
systems (Hanselowski et al., 2018), including
Long-Short Term Memory networks (LSTMs)
(Hanselowski et al., 2018; Shang et al., 2018),
term frequency-inverse document frequency (TF-
IDF) and bag of word (BOW) features with Multi-
Layer Perceptrons (Riedel et al., 2017), end-to-
end memory networks enhanced with CNNs and
LSTMs (Mohtarami et al., 2018), and non-neural
network and neural network classifiers using cue
words, Google News word2vec embeddings, and
features taken from the Fake News Challenge
dataset (Ghanem et al., 2018). We experiment
with gradient-boosting, Gated Recurrent Units
(GRUs), LSTMs and bidirectional LSTMs (BiL-
STMs).

In terms of label aggregation for veracity as-
sessment, Popat et al. (2018) derive credibil-
ity assessments for text-based claims aggregating
a number of web-sourced articles. Source em-
beddings for both claims and articles are used to
weigh the claims’ credibility, and are derived from
the names of sources who published the claims
e.g., news organisations as well as individuals,
typically public figures such as politicians. In
this paper we perform aggregation using a grad-
ual semantics for bipolar argumentation (see Sec-
tion 3), taking into account the stance of responses
towards claims and other responses.
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Gradual semantics and bipolar argumentation
for classification have been used for other tasks,
notably in (Cocarascu and Toni, 2018) to con-
tribute features for detecting deceptive reviews.
There, bipolar argumentation frameworks were
obtained using relation-based argument mining, as
understood in (Carstens and Toni, 2015) and sum-
marized in Figure 2(b). In this paper, we perform
relation-based argument mining by way of stance
detection: when stance detection is modelled as
a three-class problem, the labels FOR, AGAINST

and OBSERVING bear a strong resemblance to
ATTACK, SUPPORT and NEITHER considered in
relation-based argument mining (Carstens and
Toni, 2015). Thus, we use stance relations as argu-
mentative attack and support relations to evaluate
the veracity of claims.

Other forms of argument mining have been
studied in conjunction with stance detection.
These include argument tagging for insufficiently
labelled corpora (Sobhani et al., 2015) and iden-
tification of argumentative components in social
media conversations (Boltužić and Šnajder, 2014).

3 Background

Our method relies on Bipolar Argumentation
Frameworks (Cayrol and Lagasquie-Schiex, 2005)
for representing the argumentative relations (dis-
agree and agree) between text pairs, and the
Discontinuity-Free Quantitative Argumentation
Debates (DF-QuAD) algorithm (Rago et al.,
2016) for aggregating the strengths of claims
according to these relations. A Bipolar Ar-
gumentation Framework (BAF) is the triple
〈Args,R−, R+〉, in which Args is a set of en-
tities, called arguments, and R− and R+ are
binary attack and support relations between ar-
guments respectively. The BAF with Args =
{A1, A2, A3, A4, A5}, attack relation R− =
{(A1, A2), (A2, A1), (A2, A3)} and support rela-
tion R+ = {(A4, A2), (A4, A5)} is shown graphi-
cally in Figure 3. Note that the Ai can be instanti-
ated in a number of different ways. For this work,
we model claims and counter-claims from the Ru-
mourEval dataset as arguments. We identify attack
and support relations with the help of stance detec-
tion.

Various semantics have been proposed for eval-
uating the dialectical strength of arguments in
BAFs. We use the DF-QuAD algorithm originally
defined for QuAD frameworks, which are BAFs

A1

A3

A2 A5A4

–

–

+ +

–

Figure 3: Example BAFs.

〈Args,R−, R+〉 forming acyclic graphs with, in
addition, each argument A ∈ Args being at-
tributed a base score τ(A) that denotes its in-
trinsic strength (prior to considering its attackers
R−(A) = {B ∈ Args|(B,A) ∈ R−} and sup-
porters R+(A) = {B ∈ Args|(B,A) ∈ R+}).

As required by DF-QuAD, base scores and di-
alectical strength of arguments are from within
I = [0, 1]. In all our experiments, τ(A) = 0.5
for allA ∈ Args. DF-QuAD computes dialectical
strength

σ(A) = µ(τ(A), α(σ(R−(A)), α(σ(R+(A)))

where σ(R−(A)) is the sequence
(σ(B1), . . . , σ(Bn) for R−(A) = {B1, . . . , Bn},
n ≥ 0 (similarly for σ(R+(A))), α(()) = 0,
α((v1)) = v1, α((v1, v2)) = f(v1, v2) =
v1+v2−v1∗v2 and, for n > 2, α((v1, . . . , vn)) =
f(α((v1, . . . , vn−1), vn)), and, finally, the me-
diating function µ : I × I → I is defined as
µ(v0, va, vs) = v0 − v0 ∗ |vs − va| if va ≥ vs, and
µ(v0, va, vs) = v0+(1− v0)∗ |vs− va|otherwise.
Intuitively, µ represents the idea that attackers
of greater combined strength (given by va) than
the supporters’ combined strength (given by vs)
will weaken an argument (with base score v0)
more severely, i.e., these attackers will bring
the argument’s strength closer to 0. Similarly,
supporters of greater combined strength will bring
the argument’s strength closer to 1. Conversely,
the weaker the attackers or supporters, the smaller
the effect on the argument’s strength.

By employing DF-QuAD for veracity predic-
tion we make the assumption, for example, that
false claims will be weakened by the strength and
number of their attackers, and thus have a low
dialectical strength as computed using the algo-
rithm, because of their lack of supporting argu-
ments and abundance of attackers. However, we
are aware that this might not always be the case,
given the presence of silos or echo chambers in
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social media. Indeed, in echo chambers falla-
cious arguments may be backed up by a number of
equally misleading arguments, which would result
in a high DF-QuAD strength, despite the evidently
false claim.

4 Datasets

Two datasets are employed as part of this study:
the Fake News Challenge dataset2, used to train
the stance detection classifiers, and the Ru-
mourEval dataset3, which we adapt for the prob-
lem of fake news detection to evaluate our
argumentation-based stance aggregation methods.

DATASET CLASS SIZE (TRAIN+DEV)

FNC-1

AGREE

DISAGREE

DISCUSS

UNRELATED

ALL

3,678
840
8,909
36,545
49,972

7.36%
1.68%
17.8%
73.1%
-

RumourEval
Task A

COMMENT

DENY

QUERY

SUPPORT

ALL

2,907
344
358
910
4,519

64.3%
7.61%
7.92%
20.1%
-

RumourEval
Task B

FALSE

TRUE

UNVERIFIABLE

ALL

62
137
98
297

20.9%
46.1%
33.0%
-

Table 1: Summary of FNC-1, RumourEval Task A and
RumourEval Task B datasets.

4.1 Fake News Challenge

The Fake News Challenge (FNC-1) is a shared
task first presented in 2017 for claim verification
in the context of news article headlines using ma-
chine learning classifiers. Participating groups in
the shared task were granted access to training and
development datasets consisting of almost 50K ex-
amples of headline and article body pairs.

The stance detection task is composed of two
sub-problems. First, a classifier must deter-
mine if the input texts are related. If related-
ness is established, the classifier must then de-
termine whether the article expresses a positive
stance (AGREE), a negative stance (DISAGREE), or
no stance (DISCUSS) towards the accompanying
headline. The following is a truncated example
from FNC-1:

2https://github.com/FakeNewsChallenge/
fnc-1

3http://alt.qcri.org/semeval2017/
task8/

Headline: Spider burrowed through
tourist’s stomach and up into his chest.
Article body: Fear not arachnophobes,
the story of Bunbury’s “spiderman”
might not be all it seemed. Perth sci-
entists have cast doubt over claims that
a spider burrowed into a man’s body
during his first trip to Bali. The story
went global on Thursday, generating
hundreds of stories online... a special-
ist dermatologist was called in and later
used tweezers to remove what was be-
lieved to be a “tropical spider”. But it
seems we may have all been caught in
a web... of misinformation. Arachnolo-
gist Dr Volker Framenau said whatever
the creature was, it was “almost impos-
sible” for the culprit to have been a spi-
der...
Label: DISAGREE.

As shown in Table 1, UNRELATED examples ac-
count for a large majority (almost three quarters)
of the dataset. We discount the UNRELATED label
to focus on the three-way classification task of pre-
dicting the stance. Thus, we are left with 13,427
examples.

4.2 RumourEval Task A and Task B
Task 8 of SemEval 2017 focused on verifying ru-
mours pertaining to a number of tweets regard-
ing eight contentious topics from current events,
captured in the RumourEval dataset, adapted from
the PHEME project4. The dataset consists of 297
Twitter conversation threads (the English portion
of the PHEME journalism use case data). Ru-
mour verification differs from fake news detection
in that rumours are not necessarily presented in the
form of traditional news media (e.g., newspapers),
but the two tasks are related in that they both re-
quire the verification of text-based claims.

We were motivated to use the RumourEval
dataset because it is annotated for both stance and
veracity. Therefore, even though the original Se-
mEval shared task was not formulated with this
problem in mind, this dataset is incredibly well-
suited to investigating the relation between stance
and veracity. Stance (Task A) and veracity (Task
B) labels are provided for each of the 297 Twitter
threads in the RumourEval dataset (see Table 1).
In total this amounts to 4,161 source tweet and

4https://www.pheme.eu/
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reply tweet pairs, once we disregard the QUERY

stance detection label. Furthermore, we adapt the
remaining stance detection labels, renaming DENY

as DISAGREE, SUPPORT as AGREE, and COM-
MENT as DISCUSS to match the FNC-1 stance la-
bels. As for the veracity labels, we only consider
the TRUE and FALSE source tweets. The follow-
ing text is an excerpt from a conversation thread
in the RumourEval dataset regarding the Sydney
siege rumour topic:

u1/source tweet: Up to 20 held hostage
in Sydney Lindt Cafe siege 〈URL〉 〈URL〉
[SUPPORT]

—u2/reply 1: “@u1: Up to 20 held
hostage in Sydney Lindt Cafe siege 〈URL〉
〈URL〉.” [SUPPORT]

—u3/reply 2: Sick. “@u1: Up to 20
held hostage in Sydney Lindt Cafe siege
〈URL〉 〈URL〉” [SUPPORT]

—u4/reply 3: @u1 @u10 oh god !!!!
[COMMENT]

—u5/reply 4: @u1 at least they’ve
got good chocolate [COMMENT]

—u6/reply 5: @u5 you are an in-
sensitive idiot! [COMMENT]

—u7/reply 6: @u1 all reports say 13
[DENY]

—u8/reply 7: “@u1: Up to 20 held
hostage in Sydney Lindt Cafe siege 〈URL〉
〈URL〉” - wonder if they’ll get paid over-
time [COMMENT]

—u9/reply 8: “@u1: Up to 20 held
hostage in Sydney Lindt Cafe siege 〈URL〉
〈URL〉” - Oh. My. God. I am SICK!
[COMMENT]
Task A label: See conversation thread.
Task B label: FALSE

In the above example, the level of indentation
is used to distinguish between direct and nested
replies. Note that user u10 does not post a re-
sponse in the conversation thread, but is tagged in
the conversation by u4. Source tweets also have
stance labels relating to whether they support the
rumour topic which they concern. Each conversa-
tion thread in the RumourEval dataset is accom-
panied by details pertaining to the conversation
structure. This provides information about how
the tweets relate to each other, including which are
direct replies (e.g., reply 1) and which are nested
replies (e.g., reply 5) to the source tweet. We use
this structure to construct BAFs.

5 Methodology & Experimental Setup

Our methodology is shown in Figure 4. We train
a number of stance detection classifiers on the
FNC-1 dataset, the best of which we use to pre-
dict the labels for the RumourEval Task A dataset.
We then perform stance aggregation on the pre-
dicted labels, in order to arrive at a veracity predic-
tion. We compare their veracity assessment per-
formance against the gold standard labels from the
RumourEval task B dataset. This allowed us to
compare and evaluate the usefulness of the stance
detection predictions. The reliability of these la-
bels also enabled us to gauge the effectiveness of
stance detection as a tool for veracity assessment.

In the remainder of this section, first we de-
scribe the methods we employ for stance classi-
fication and then our stance aggregation methods.
We developed our own stance detection classifiers
using gradient boosting as well as (three forms
of) neural networks, of which we selected two
(LSTM and BiLSTM) as best performing in stance
prediction, to generate BAFs. For stance aggre-
gation, a credibility-weighted average, DF-QuAD
with only direct replies, and DF-QuAD with both
direct and nested replies, applied to appropriately
constructed BAFs using the stance detection clas-
sifiers.

5.1 Stance Classification

We implemented four stance detection classi-
fiers. Three of these are recurrent neural networks
(RNNs) or bidirectional RNNs (GRU, LSTM,
BiLSTM), constructed using the Tensorflow5 and
Keras6 deep learning libraries. A summary of the
hyper-parameters selected for our RNN models is
shown in Table 2. We also used a non-neural tech-
nique, i.e., gradient boosting. We built the gradient
boosting classifier using the Scikit-Learn library
module for ensemble classifiers7.

5.1.1 Preprocessing
All four classifiers were trained using headline-
article text pairs extracted from the FNC-1 dataset.
The effectiveness of the classifiers was tested on
the RumourEval Task A dataset. Note that FNC-
1 deals with headlines and article bodies, which
are more structured than the tweets which make
up the RumourEval dataset, so particular care had

5https://tensorflow.org
6https://keras.io/
7https://scikit-learn.org
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Claim,
(Text 1,

...
Text N).

Stance
Detection

Stance
Aggregation

Prediction–
true or false

Aggregation MethodsClassifiers

Figure 4: Veracity prediction work flow. As stance classifiers we use LSTMs and BiLSTMs. Methods employed
for aggregation are a credibility-weighted average baseline, DF-QuAD (only direct replies), and DF-QuAD (both
direct and nested replies).

to be taken in addressing these differences for clas-
sifiers trained on the former to perform well when
evaluated on the latter.

We used regular expressions to remove links
and user handles from tweets. We opted to use
100D pre-trained GloVe embeddings (Pennington
et al., 2014) to represent the text inputs. For the
deep neural network architectures, we constructed
embedding layers. In order to train the non-neural
classifier, we computed a mean of each embed-
ding.

We attempted to minimize out-of-vocabulary
(OOV) words with lemmatization where possible.
Furthermore, we utilized the Stanford Named En-
tity Recognizer8 to construct named entity sub-
stitutions for locations, organizations, and named
people to both minimize OOV words and also pre-
vent over-fitting due to coincidental correlations
between named entities and stance labels in the
training set, as adopted by Conforti et al. (2018)
and Lee et al. (2018). The purpose of employ-
ing these techniques was to train more generalized
classifiers that would output more accurate predic-
tions when applied to the unseen examples in the
RumourEval dataset. This was particularly impor-
tant given the differences in topics between FNC-
1 and RumourEval, but also because FNC-1 con-
tains text pertaining to news articles written in for-
mal English, whereas the RumourEval corpus is
composed of short snippets of user-generated text
made up of colloquialisms and neologisms which
word embeddings is not able to capture semanti-
cally.

Furthermore, we made the choice to use strat-
ified cross-validation for training the classifiers.
This was because, as can be seen in Table 1, the
FNC-1 dataset is highly unbalanced. Although
we performed 3-way classification to learn the
AGREE, DISAGREE, and DISCUSS labels, only the

8https://nlp.stanford.edu/software/
CRF-NER.html

AGREE and the DISAGREE labels play a role when
it comes to constructing the bipolar argumentation
graphs on which the DF-QuAD-based stance ag-
gregation is performed.

HYPER-PARAMETER VALUE

Batch size 16
Dropout 0.25
Recurrent dropout 0.25
Units (dimensions of output space) 64

Table 2: Hyper-parameters for training RNN models.
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Figure 5: Accuracy of classifiers for 3-way stance
problem.

5.2 Stance Aggregation
This section outlines the techniques we employ for
aggregating stance labels. Stance aggregation is
performed on the RumourEval dataset. We com-
pare the performance of three stance aggregation
methods for aggregating both the gold standard
stance labels provided for the RumourEval Task B
dataset and also the labels generated by the LSTM
and BiLSTM models. We choose to only use the
predictions generated by the LSTM and BiLSTM
models because they display the best test perfor-
mance on the RumourEval Task A dataset, as we
will see in Section 6.
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Dataset Model AGREE DISAGREE DISCUSS

P R F1 P R F1 P R F1

FNC-1

GB .831 .736 .781 .570 .322 .412 .926 .972 .934
GRU .645 .685 .665 .402 .244 .304 .876 .887 .882

LSTM .817 .878 .846 .652 .493 .562 .964 .955 .960
BiLSTM .829 .840 .835 .676 .493 .570 .949 .965 .957

RUMOUR

EVAL

LSTM .166 .490 .248 .160 .0119 .0222 .753 .513 .610
BiLSTM .178 .430 .252 .105 .0448 .0628 .759 .576 .655

Table 3: Precision (P), recall (R), and F1-score (F1) of stance detection classifiers on FNC-1 test set and Ru-
mourEval dataset (see Section 5).

5.2.1 Aggregation via DF-QuAD Semantics

A

DB C

–+ +

(a) Only direct reply (DR) stance re-
lations for direct and nested replies

A

DB C

E F

G H

–+ +

– –

– –

(b) Direct reply (DR) and nested reply (NR)
stance relations for direct and nested replies.

Figure 6: Examples of constructed BAFs. A is a source
tweet from RumourEval. B, C, D, E, F , and G are all
replies. Direct attack and support relations are drawn
with solid lines. Nested attack and support relations
are shown with dashed lines.

Each conversation thread in RumourEval takes
a form similar to the example given in Section 4.2.
Argument A in Figure 6 is the claim for which
we aim to predict the veracity. A is a source
tweet (i.e., start of the conversation thread), so it
forms the root node of the graphs shown in Fig-
ures 6a and 6b. We construct two BAFs: (1) a
BAF in which attack and support relations only ex-
ist between source tweet, in this case argument A,
and direct replies, as dictated by the stance detec-
tion classifier, and (2) a BAF with additional re-
lations between reply tweet nodes, accounting for
nested replies as well as direct replies. Figure 6

shows that A has three direct replies in the con-
versation thread; these are B, C, and D. Only
these four arguments (A,B,C,D) are present in
the flat BAF described in (1) above. The BAF il-
lustrated in Figure 6b incorporates the responses
(arguments and counter-arguments) to A’s replies
B, C, andD. B is attacked by argumentE, andD
is attacked by F , which is subject to two counter-
arguments G and H . The motivation for the latter
graph construction, which incorporates both direct
and nested reply tweets, is to learn the credibil-
ity of replies through their relation to each other,
and incorporate this in the aggregation indirectly,
via their dialectical strength. This reflects the ac-
ceptability of the claim in the context of the ar-
guments formed with texts that support and re-
fute it, as opposed to the credibility used to com-
pute credibility-weighted averages, which is often
based on meta-data pertaining to the source of the
claim.

6 Results

Here we discuss the results obtained for both
stance detection and stance aggregation for verac-
ity prediction. We evaluate the effectiveness of the
four classifiers given earlier for stance detection
by cross-validation on the FNC-1 dataset, and the
choose the two best performing such classifiers on
the RumourEval Task A dataset. We then eval-
uate the effectiveness of methods for predicting
the veracity of the rumour claims presented in the
RumourEval dataset: these are, in addition to the
two DF-QuAD-based methods presented earlier, a
standard credibility-weighted average baseline.

6.1 Stance Classification Performance

As expected the stance detection classifiers per-
formed well on the FNC-1 3-class task, but quite
poorly on the RumourEval Task A dataset (see Ta-
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ble 3). This is most likely because of the paucity
of DISAGREE examples in the training data. The
LSTM and BiLSTM classifiers recorded the best
performance on the FNC-1 test set. For this rea-
son, we chose to use these two models for predict-
ing stance labels on RumourEval Task A.

6.2 Aggregation Performance

Table 4 summarizes our stance aggregation results,
from which it can be seen that the DF-QuAD-
based aggregation methods exhibit comparable or
better performance than the non argumentation-
based baseline. Figure 7 shows the accuracy
achieved by each method for the gold standard la-
bels and the predicted labels. Further error analy-
sis is given in the confusion matrix for each of the
aggregation methods provided in Figure 8.
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Figure 7: Comparison of stance aggregation accuracy
achieved by each method on gold standard labels, and
LSTM and BiLSTM stance detection labels.

6.2.1 Baseline

The baseline we devised for our experiments com-
putes a credibility-weighted average of the dis-
agree and agree stance labels relating to a claim.

For the credibility-weighted average we simply
defined the credibility to be the number of fol-
lowers of the account that posts the reply. Since
it is often the case that spam accounts will have
many followers that are not genuine (i.e., we as-
signed any account that does not have a profile
photo a credibility of zero, assuming that this is
not a genuine account. We normalized the Twitter
user credibility for each reply in a conversation.
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Figure 8: The confusion matrix for each of the aggre-
gation methods performed on the three types of label.

6.2.2 Comparison of Methods
Stance aggregation was performed using four
methods, of which two argumentative: one imple-
mentation of DF-QuAD on BAFs considering only
the argumentation relations on direct reply edges
of the BAFs, and another which considers all rela-
tions. We performed a DF-QuAD strength evalua-
tion on both the flat and layered BAFs. We inter-
preted a value of the DF-QuAD strength function
(see Section 3) which is > 0.5 to be a true label,
otherwise the rumour claim is labelled false.

For all three types of labels, the aggregation-
based evaluation either beats the baseline or per-
forms equally as well. Furthermore, the LSTM
and BiLSTM predicted labels achieve aggrega-
tion accuracy results that are very similar to those
achieved using the gold standard labels. The BiL-
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Stance aggregation method Veracity Assessment (RumourEval Task B)
FALSE TRUE

P R F1 P R F1

Gold standard labels
(RumourEval Task A)

CREDIBILITY-WEIGHTED AVERAGE .581 .383 .462 .743 .866 .800
DF-QUAD (DR) .625 .532 .575 .789 .845 .816
DF-QUAD (DR + NR) .615 .511 .558 .781 .845 .811

LSTM stance
detection labels

CREDIBILITY-WEIGHTED AVERAGE .750 .079 .143 .746 .990 .851
DF-QUAD (DR) .667 .105 .182 .750 .981 .850
DF-QUAD (DR + NR) .667 .105 .182 .750 .981 .850

Bidirectional LSTM
stance detection labels

CREDIBILITY-WEIGHTED AVERAGE .400 .050 .089 .719 .970 .826
DF-QuAD (DR) .500 .075 .130 .724 .970 .829
DF-QuAD (DR + NR) .500 .075 .130 .724 .970 .829

Table 4: Precision (P), recall (R), and F1-score (F1) of the stance aggregation methods when applied to both
gold standard stance labels and the stance labels predicted by the LSTM and bidirectional LSTM trained stance
detection classifiers.

STM labels give the worst performance of the
three label types. This is likely related to the
fact that, although the BiLSTM classifier outper-
forms the LSTM classifier on the FNC-1 dataset
(see Figure 5), it does not accurately predict Ru-
mourEval Task A labels as well as the LSTM –
particularly DISAGREE labels. As expected, the
gold standard tweet labels show the best perfor-
mance for the two DF-QuAD aggregation meth-
ods. They also show comparable results to the
LSTM labels, which however are likely to be un-
reliable because of the classifiers inability to gen-
eralize well.

7 Conclusions and Future Work

We have proposed a method for veracity predic-
tion based on a form of argumentative aggrega-
tion rather than credibility-weighted average of
stance labels. We used stance label predictions for
relation-based argument mining to generate bipo-
lar argumentation frameworks (BAFs). We then
evaluated the dialectical strength of arguments in
these frameworks as a form of aggregation for ve-
racity prediction. Empirical results on a combina-
tion of the FNC-1 dataset for stance detection and
RumourEval dataset for veracity prediction show
that modelling various stance labels within a bipo-
lar argumentation framework may offer a promis-
ing new approach to fake news detection via stance
detection and dialectical aggregation.

However, there were a number of limitations
in our study, in particular the size of the training
data and the unbalanced labels of the training data,
resulting in stance detection classifiers that per-
formed poorly on the unseen RumourEval dataset.

In order to improve the performance of the clas-
sifiers we could incorporate an attention mecha-
nism in our RNN architectures. Furthermore we
could train the models on hand-crafted lexical fea-
tures in addition to word embeddings. In addition,
the rumour understanding dataset and the features
described in Turenne (2018) could be employed
for further experiments into gradual argumenta-
tion evaluation of stances.

In order to draw further conclusions about the
usefulness of dialectical strength in the task of
stance aggregation, studies should be conducted
on more robust classifiers. The limitations of the
training datasets and classifiers developed from
this training data mean that the conclusions we
can infer are limited. Also, as we elucidate in
Section 3, the nature of the data – conversations
taken from social media – also restricts the obser-
vations we can draw from our findings. Further-
more, it would be worthwhile to investigate the
performance of other gradual semantics for BAFs,
as well as non-gradual semantics, to evaluate the
strengths of claims in BAFs.

For future work, it would also be worthwhile
to explore how BAFs extracted from stance de-
tection classifiers, and the dialectical relations be-
tween the arguments in these BAFs, could be used
to provide explanations for the veracity prediction
of the claim. These explanations would hopefully
provide clarification about why a veracity label –
true or false – was decided, as well as which ev-
idence or counter-evidence arguments were most
pivotal in arriving at that judgement.
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Abstract

This paper examines the factors that govern
persuasion for a priori UNDECIDED versus
DECIDED audience members in the context of
on-line debates. We separately study two types
of influences: linguistic factors — features of
the language of the debate itself; and audi-
ence factors — features of an audience mem-
ber encoding demographic information, prior
beliefs, and debate platform behavior. In a
study of users of a popular debate platform,
we find first that different combinations of lin-
guistic features are critical for predicting per-
suasion outcomes for UNDECIDED versus DE-
CIDED members of the audience. We addi-
tionally find that audience factors have more
influence on predicting the side (PRO/CON)
that persuaded UNDECIDED users than for DE-
CIDED users that flip their stance to the op-
posing side. Our results emphasize the im-
portance of considering the undecided and de-
cided audiences separately when studying lin-
guistic factors of persuasion.

1 Introduction

Understanding the factors that influence persua-
sion in the context of argumentation (e.g. debates)
has been an important focus in a variety of re-
search areas. Natural language processing (NLP)
research on persuasion has focused for the most
part on uncovering the linguistic factors that de-
termine and define persuasive arguments — fea-
tures of the language of the argument itself. For
example, Tan et al. (2016) and Zhang et al. (2016)
have found that the language used in arguments
and the patterns of interaction between debaters
are important predictors of persuasiveness. Re-
cently, however, studies have emerged that begin
to study the effects of audience characteristics on
persuasion, e.g. features that encode demographic
information, the prior beliefs, and debate platform

behavior of individual listeners of a debate or read-
ers of an argument. Lukin et al. (2017), for ex-
ample, find that different types of people are per-
suaded by different types of arguments. And Dur-
mus and Cardie (2018) show that the prior beliefs
of the audience have a significant impact on pre-
dicting whether or not a particular audience mem-
ber will be persuaded to flip their stance on a de-
bated topic.

Research in psychology and political science
moreover suggests that there are key differences
in the persuasion of undecided versus decided vot-
ers/audience members. For example, Petty and
Cacioppo (1996) find that prior experiences and
beliefs can lead to the re-framing of a message
perceived by a person to maintain consistency be-
tween their prior beliefs and their attitudes to-
wards the topic of the message. In particular,
studies show that a priori decided voters sim-
ply ignore certain information in order to main-
tain this consistency (Sweeney and Gruber, 1984;
Vecchione et al., 2013; Kosmidis, 2014). In con-
trast, an undecided voter is asked to make a deci-
sion on an issue for which previously received in-
formation was somehow unconvincing; and Kos-
midis (2014), Kosmidis and Xezonakis (2010),
and Schill and Kirk (2014) show that, as a result,
these voters are likely to rely heavily on informa-
tion conveyed in a new message.

The undecided voter group furthermore holds
the highest potential for persuasion (Kosmidis and
Xezonakis, 2010; Shehryar et al., 2017). Public
support for social and political causes often criti-
cally depends on the undecided decision makers.
To the best of our knowledge, computational stud-
ies of persuasion in NLP have not yet studied this
important subset of the audience separately.

This paper studies argumentation in the context
of online debate to better understand the factors
that govern persuasion for a priori UNDECIDED
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versus DECIDED members of the audience. We
study persuasion at the individual (i.e. audience
member) level, and find that the linguistic fea-
tures most important for persuasion differ for the
UNDECIDED and DECIDED audience subgroups.
Consistent with results of social and political psy-
chology research, the linguistic feature differences
correspond to rhetorical styles found to be effec-
tive on undecided and decided audiences. Ad-
ditionally, we find that certain audience features
are more important for predicting undecided cases
of persuasion than for predicting decided cases of
persuasion.

The remainder of this paper is organized as fol-
lows. Related work is described in Section 2. We
describe the dataset in Section 3 and experiment
methodology in Section 4. Results and analysis is
in Section 5, and conclusions are in Section 6.

2 Related Work

Language and persuasion. Extensive work has
been done in cognitive and social psychology on
the linguistic influence on persuasion. Some of
the most critical elements of persuasive text in-
clude lexical complexity, language intensity, and
power of speech style (Dillard and Pfau, 2002).
Studies on linguistic factors effecting the persua-
sion of the listener have shown that language is
a key factor in predicting the outcome of debates
(Paxton and Dale, 2014; Jorgensen et al., 1998).
These studies find the importance of various lan-
guage features: lexical qualities such as personal
pronoun use, word sentiment, and hedging (Pax-
ton and Dale, 2014), and rhetoric qualities such
as precision, firmness, energy, and commitment
(Jorgensen et al., 1998). These works in psychol-
ogy highlight the importance of studying linguistic
features in arguments and persuasion.

Argument mining. Much recent work in argu-
mentation has focused on the automatic detection
of argument structures in text (Lippi and Torroni,
2016; Schulz et al., 2018; Stab et al., 2018; Morio
and Fujita, 2018). Research has shown promis-
ing results on using extracted argument structures
as features on tasks that involve predicting con-
vincingness (Ghosh et al., 2016; Yunfan Gu and
Huang, 2018; Cano-Basave and He, 2016).

Specific to debates, work has been done on de-
tecting the stance of the speaker. Walker et al.
(2012), for example, find that structuring the de-
bates in terms of agreement relations between

speakers improves prediction. Lexical and syntac-
tic argument features are shown to improve pre-
dictive performance in Somasundaran and Wiebe
(2010). More relevant to our work, recent studies
have examined the role of language in predicting
persuasion outcomes in debates. For example, Tan
et al. (2016) find that the linguistic interaction be-
tween an opinion holder and opposing debater are
highly predictive of persuasiveness. And Zhang
et al. (2016) find that debaters who target and ad-
dress their opponent’s points are more likely to
win the debate.

While these studies motivate the linguistic fea-
tures examined in our study, they do not take fac-
tors corresponding to audience characteristics into
consideration. Our work aims to study the linguis-
tic characteristics of persuasive text, while also
considering audience characteristics such as prior
beliefs and decidedness.

Prior views of the audience. Persuasion of an
audience is not solely dependent on the language
used by the speaker. Research in psychology em-
phasizes the significance of people’s prior views
on their perception of new information. The ef-
fectiveness of a message depends significantly on
the prior beliefs and the strengths of beliefs of the
message recipient (Johnson et al., 1995; Lau et al.,
1991).

Recent work has analyzed the influence of au-
dience characteristics on predicting persuasion
(Lukin et al., 2017; Durmus and Cardie, 2018).
Lukin et al. (2017) examine the effects of audience
factors and argumentation types in belief change.
They study dialogs from 4forums.com1, which
contain argument type annotations. Their results
show that information on prior beliefs and person-
ality type improves the ability of the model to pre-
dict belief change; more conscientious, open, and
agreeable people tend to respond more to emo-
tional argument types.

The importance of considering audience-
specific prior belief factors is further illustrated
in Durmus and Cardie (2018). Using debate and
user data from debate.org, they study the effects of
prior beliefs on various controversial issues along
with linguistic factors on predicting the outcome
of debates. Importantly, they find that the linguis-
tic features most important for prediction differ
when audience features are considered from when

1http://www.4forums.com/political/
forum.php/
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they are not. To the best of our knowledge, this
work is most relevant to ours because it studies
debate text and considers prior beliefs of both the
audience and the debaters. Our work differs from
this study in that we separately consider persua-
sion of audience members who were undecided
before the debate from audience members who
switched sides.

The undecided audience. There has been a
substantial amount of research effort in the social
and political sciences on undecided and decided
voters. A study on the 2005 British general elec-
tion finds that undecided voters are more suscep-
tible to campaign persuasion (Kosmidis and Xe-
zonakis, 2010). This result, elaborated on in Kos-
midis (2014), is because decided voters rely more
on their prior beliefs while undecided voters place
higher weight on information conveyed in cam-
paigns.

Consistent with this account, studies by Schill
and Kirk (2014) on 2008 and 2012 U.S. presi-
dential debate outcomes find that the most criti-
cal portions of the debate to undecided voters were
the content-rich statements, and that the rhetorical
strategies shown to be effective to undecideds are
strategies that “transcended the personalities of the
candidates”. In contrast, studies by Adams et al.
(2011) on European election campaigns find that
in response to policy statements of political parties
during elections, voters adjust their Left-Right po-
sitions based on their subjective perceptions of the
party’s campaign and not on the campaign’s actual
policy statements. Research on selective exposure
(favoring information that aligns with an individ-
ual’s prior beliefs and attitudes) provides insight
into the mechanisms behind this tendency. Voters
already decided on an issue tend to avoid infor-
mation that is inconsistent with their attitudes and
are receptive to information consistent with their
attitudes (Sweeney and Gruber, 1984; Vecchione
et al., 2013).

3 Data Description

The debate dataset from Durmus and Cardie
(2018) consists of 67,315 debates and user infor-
mation on 36,294 users obtained from debate.org.

3.1 Debates

Debates span over 23 different categories (e.g.
‘Politics’, ‘Education’, ‘Movies’). Each debate
consists of multiple rounds, where a round con-

ROUND 1
PRO: ... this reason, you are not free to

make threats or defamatory state-
ments against another person in ...

CON: ... laws violate the fundamental
freedom of speech which democ-
racy is founded upon ...

ROUND 2
PRO: ... has ignored my point about hate

speech breeding an “us vs them”
mentality, and how such ...

CON: ... question is, does our govern-
ment have the right to tell us what
our opinions are, and to define ...

ROUND 3
PRO: ... evidenced by the rise in vio-

lence against Hispanics and Mus-
lims I cited in my second round ...

CON: ... courts to be able to decide
which opinions are “moral” and
which are not? How fascist do ...

Table 1: An example debate titled ‘HATE SPEECH
LAWS ARE A GOOD IDEA’.

tains text from the PRO debater and the CON
debater. An example debate is shown in Ta-
ble 1. Other examples of debate titles are: “THE

DEATH PENALTY IS A SUITABLE PUNISHMENT”
and “ANIMAL TESTING SHOULD BE BANNED”.

Users can interact with debates by voting on
them. Votes include “AGREE WITH BEFORE THE

DEBATE” and “AGREE WITH AFTER THE DE-
BATE” for each debater/side (users can respond
with PRO, CON, or TIE). We focus our analysis
on two distinct cases of persuasion based on this
vote data.

Case 1: voters persuaded from the middle.
This category constitutes voters who indicate TIE

between PRO and CON for “AGREE WITH BE-
FORE THE DEBATE” and indicate one side, PRO
or CON, for “AGREE WITH AFTER THE DEBATE”.
We keep instances of persuasion that correspond
to this category and refer to this case as FROM-
MIDDLE.

Case 2: voters persuaded from the opposite
side. This category constitutes voters who indicate
one side for “AGREE WITH BEFORE THE DEBATE”
and indicate the opposite side (PRO or CON) for
“AGREE WITH AFTER THE DEBATE”. We keep
instances that correspond to this category, referred
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Persuasion Case #instances #debates
FROM-MIDDLE 4360 3652
FROM-OPPOSING 2642 2183

Table 2: Dataset statistics.

to as FROM-OPPOSING. In our prediction task, the
original side of the voter is not given to the model.

Figure 1 illustrates example user votes for each
of the two cases. Distinguishing instances of vot-
ers being persuaded into these case groupings al-
lows us to examine what makes an argument per-
suasive to audience members who are undecided
versus decided with respect to a particular debate
topic. Table 2 summarizes the dataset statistics rel-
evant to the voter cases.

3.2 User Information

User profiles contain self-identified demographic
information, such as GENDER and RELIGIOUS

IDEOLOGY. Profiles additionally contain users’
opinions on current controversial debate topics
(denoted by BIG-ISSUES), such as ABORTION,
SOCIAL SECURITY, and MINIMUM WAGE2. Users
can respond with PRO (in favor), CON (against),
UND (undecided), N/O (no opinion), or N/S (not
saying).

4 Prediction Task

We aim to study what factors are most important
in influencing audience members to be persuaded
to one side or the other for each of the cases (a
priori undecided or decided) of persuasion. En-
coding audience-level and linguistic factors as fea-
tures, we structure the prediction task as follows:

Given an individual voter, predict which
debater/side (PRO or CON) the voter
will be convinced by after the debate.

We consider only samples from the data where (1)
a voter was undecided before the debate and then
adopted a stance, i.e. voted for one of the debaters
as the winner; and (2) a voter was (seemingly) de-
cided beforehand and then flipped their stance. We
do not consider samples where (1) a voter declared
a “tie” between the debaters after the debate; and
(2) a voter was decided beforehand, and voted for
the debater with the stance that they agreed with
beforehand.

2https://www.debate.org/big-issues/

To study the effect of each of the debaters’ lin-
guistic and user-based features on persuasion, in
this setting, we specifically look at which side
(PRO vs. CON) did the convincing for a partic-
ular voter. We believe that restricting the samples
in the way described above allows us to best study
what influences persuasion when voters are suc-
cessfully convinced.

4.1 Features

Audience features. User profile data is used to
generate a number of features for a voter and the
PRO and CON debaters for a given debate.

The gender of a voter is one-hot encoded to ac-
count for the user’s option to not include gender
in their profile; the elements of the vector corre-
spond to FEMALE, MALE, and OTHER/DID NOT

INDICATE. Additionally, information about the
debaters’ genders are encoded as whether or not
the debater’s gender is the same as the voter’s.

User profile data is also used to capture the prior
opinion similarities of the voter and debaters in
two ways, as in Durmus and Cardie (2018). First,
the political and religious ideologies are encoded
as whether or not each of the debaters’ ideologies
is the same as each of the voter’s. We denote this
feature by matching ideology. Second, the sim-
ilarity of the voter and debaters’ BIG-ISSUES re-
sponses are encoded as follows. Each issue in
BIG-ISSUES is represented as a one-hot encoding
corresponding to PRO, CON, UND, and N/O.
The encoding of an example user can be seen in
Figure 2. All issue encodings are concatenated
to create a BIG-ISSUES vector for each user. The
cosine similarity between the voter’s BIG-ISSUES

vector and each debaters’ BIG-ISSUES vector is
used as a feature. We denote this feature by opin-
ion similarity.

The number of elements in the voter’s BIG-
ISSUES vector corresponding to PRO and CON,
and the number of elements in the vector corre-
sponding to UND and N/O are used to encode
the voter’s decidedness or undecidedness, respec-
tively. We denote the feature by decidedness.
An example of the encoding is shown in Fig-
ure 2. This feature captures the degree to which
the voter’s opinions are established on widely dis-
cussed topics.

The frequency of a voter being persuaded is en-
coded as the percentage of other training debates
in which the voter changed their stance, out of all
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Figure 1: Example votes for a debate showing each case of persuasion.

Figure 2: Example user profile and corresponding feature encodings.

training debates on which the voter made a vote.
We denote the feature by persuadability. This fea-
ture is an indication of how persuadable a voter is,
in general.

Linguistic features. We process debate text
and use linguistic features as is done in Durmus
and Cardie (2018). The text from all rounds of
PRO are concatenated before feature processing.
The same is done for the rounds of CON. We use
the same set of linguistic features from Durmus
and Cardie (2018), described as follows.

Lexical features include TF-IDF, modal verbs,
swear words, spelling errors, and punctuation. A
speaker’s word choice (i.e. use of hedging, and
particular causal connectors and modal particles)
are indicative of the mode of argumentation (Gold
et al., 2015; Paxton and Dale, 2014).

Style features include length, personal pro-
nouns, referring to opponent, use of citations, and
links. Using citations and addressing an oppo-
nent’s points are critical components of justifica-
tion that affect the reception of an argument. Addi-
tionally, the length of a speaker’s utterance and the
language used when referring to self and the oppo-

nent exhibit characteristics of respect and partici-
pation between the debaters, which are important
aspects for communication outcomes (Tan et al.,
2016; Gold et al., 2015; Paxton and Dale, 2014).

Semantic features include sentiment, subjectiv-
ity (Wilson et al., 2005), connotation (Feng and
Hirst, 2011), and politeness. The sentiment and
subjectivity of an argument impacts the reception
of the message, and are predictive of argument
stance (Somasundaran and Wiebe, 2010). In ad-
dition to these attributes, connotation and polite-
ness cues contribute to the patterns of interaction
of debaters, which are critical in predicting per-
suasiveness (Tan et al., 2016).

Argumentation features, as in (Somasundaran
et al., 2007), have been shown to predict the stance
and opinion of a speaker. These include the fol-
lowing: assessment, authority, conditioning, con-
trasting, emphasizing, generalizing, empathy, in-
consistency, necessity, possibility, priority, rhetor-
ical questions, desire, and difficulty.
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4.2 Hypotheses

We hypothesize that there are key differences in
the linguistic features important for persuasion of
an a priori undecided audience member and the
persuasion of an a priori seemingly decided audi-
ence member to change their mind. Drawing from
social and political science studies, we hypoth-
esize that the persuasion of undecided audience
members will critically depend on content-centric
language features, while the persuasion of seem-
ingly decided audience members will be more in-
fluenced by stylistic language features. Addition-
ally, we hypothesize that audience features will
provide important context, improving predictive
performance.

4.3 Methodology

We use Logistic Regression to perform the classi-
fication task. Prediction accuracy is evaluated us-
ing 5-fold cross validation. We use 3-fold cross
validation on the training set to select model pa-
rameters. We perform ablation analysis first on
audience features only and linguistic features only,
then on combinations of the best-performing au-
dience and linguistic features. This analysis is
done separately for the subsets of data correspond-
ing to undecided and decided cases of persua-
sion (FROM-MIDDLE and FROM-OPPOSING, re-
spectively). We use majority classifier as a base-
line.

5 Results and Analysis

Results for models and feature ablation experi-
ments are show in Table 3. Majority baseline pro-
duces 57.43% and 59.42% accuracy for FROM-
MIDDLE and FROM-OPPOSING, respectively. This
baseline predicts the majority debater/side be-
tween PRO and CON in the training set of ex-
amples.

Linguistic vs. audience features. As shown
in Table 3, the best performance is achieved
when both audience and linguistic features are in-
cluded, obtaining 69.01% and 67.22% accuracy
for FROM-MIDDLE and FROM-OPPOSING, respec-
tively. We find that linguistic features are more
important for predictive accuracy than audience
features. Relying only on audience features ob-
tains accuracies of 61.47% for FROM-MIDDLE and
61.54% for FROM-OPPOSING. Using all linguistic
features produces a significant improvement over
baseline accuracy, achieving 66.95% and 66.65%

Accuracy of Models
FROM-
MIDDLE

FROM-
OPPOSING

Majority Baseline 57.43% 59.42%
All Features 69.01% 67.22%
Audience Features 61.47% 61.54%
- persuadability 61.46% 61.51%
- gender 61.44% 61.47%
- matching ideology 61.42% 61.39%
- decidedness 61.33% 61.13%
- opinion similarity 59.04% 59.80%
Linguistic Features 66.95% 66.65%
- unigram TF-IDF 65.25% 64.54%
- use of citations and
referring to opponent 67.20% 66.12%
- subjectivity 66.03% 67.79%

Table 3: Accuracy results, for majority class base-
line, all features, audience features, and linguis-
tic features. Remaining results are ablation studies,
where ‘- feature’ denotes the removal of the feature.
Underlined results are feature combinations that im-
prove performance over including all features.

for FROM-MIDDLE and FROM-OPPOSING, respec-
tively. This result is surprising and in contrast
to results from Durmus and Cardie (2018), who
find that audience features improve accuracy more
than linguistic features. We suspect that this dif-
ference arises because our experiments consider
debates from all categories, while Durmus and
Cardie (2018) restrict analysis to political and reli-
gious debate categories. Political and religious de-
bate topics tend to be more controversial in nature
Fichman and Hara (2014), and correspond more
closely to the issues encoded in the audience fea-
tures; the BIG-ISSUES elements consist primarily
of political and religious issues 3. As such, these
features will be more informative in political and
religious debate settings.

Audience features. Feature ablation across
user-based features shows that all audience fea-
tures are helpful in predicting vote outcomes for
both voter groups. We find that the most important
feature is opinion similarity4; removing this fea-
ture decreases prediction accuracy from 61.47%
to 59.04% for FROM-MIDDLE, and from 61.54%
to 59.80% for FROM-OPPOSING. This result is

3https://www.debate.org/big-issues/
4For UserA and UserB, the cosine similarity of

BIG-ISSUESA and BIG-ISSUESB .
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consistent with research on voter behavior from
Arcuri et al. (2008) and Friese et al. (2012), who
find that despite reporting uncertainty, undecided
voters have implicit attitudes that are predictive of
voting behavior.

Linguistic features. The most important lin-
guistic feature for both voter groups is uni-
gram TF-IDF5, whose removal decreases perfor-
mance to from 66.95% to 65.25% for FROM-
MIDDLE, and from 66.65% to 64.54% for FROM-
OPPOSING. However, not all linguistic features
are helpful in predictive accuracy. For instance,
removing use of citations6 and referring to oppo-
nent7 features increases accuracy from 66.95% to
67.20% for FROM-MIDDLE. Similarly, removal
of the subjectivity8 feature improves accuracy for
FROM-OPPOSING from 66.65% to 67.79%.

It should be noted that the linguistic fea-
tures whose removal improves performance for
FROM-MIDDLE and FROM-OPPOSING are differ-
ent, showing that there are distinctions in the im-
portant factors for persuasion between the voter
groups. These differences are further explored in
the following sections.

5.1 Differences Between Persuasion Groups

5.1.1 Linguistic Feature Differences
We find distinct differences in the important fea-
tures for predicting the vote outcome for voter
groups FROM-MIDDLE and FROM-OPPOSING. Ta-
ble 4 shows that the best-performing set of linguis-
tic features for FROM-MIDDLE includes all fea-
tures minus use of citations, referring to opponent,
and swear words, while the best-performing set of
linguistic features for FROM-OPPOSING includes
all features minus subjectivity, modals9, and bi-
/tri-gram TF-IDF10. These linguistic feature sets
are denoted by MIDDLE* and OPPOSING*, re-
spectively. Using features OPPOSING* increases
accuracy for FROM-OPPOSING from 67.22% to
68.39%, while decreasing accuracy for FROM-
MIDDLE from 69.01% to 68.51%. Conversely,
using features MIDDLE* increases accuracy for
FROM-MIDDLE from 69.01% to 69.17%, while
decreasing accuracy from 67.22% to 66.92%.

5Calculated with a maximum of 50 terms.
6The number of explicit source citations.
7The usage of phrases like “according to my opponent”.
8Number of words with negative strong, negative weak,

positive strong, and positive weak subjectivity.
9The usage of modal verbs, i.e. can, should, will, and may.

10Calculated with a maximum of 30 terms.

Accuracy of Models
FROM-
MIDDLE

FROM-
OPPOSING

All Features 69.01% 67.22%
- persuadability 68.33% 67.52%
- matching ideology 68.99% 67.30%
User+MIDDLE* 69.17% 66.92%
- persuadability 69.16% 66.84%
- matching ideology 68.60% 66.92%
User+OPPOSING* 68.51% 68.21%
- persuadability 68.46% 68.32%
- matching ideology 67.96% 68.39%

Table 4: Accuracy results, for all features and best-
performing linguistic feature sets. Remaining results
are ablation studies, where ‘- feature’ denotes the re-
moval of the feature. Underlined results are feature
combinations that improve performance over includ-
ing all features. MIDDLE* denotes the best-performing
combination of linguistic features for FROM-MIDDLE,
which includes all linguistic features minus use of cita-
tions, referring to opponent, and swear words. OPPOS-
ING* denotes the best-performing combination of lin-
guistic features for FROM-OPPOSING, which includes
all linguistic features minus subjectivity, modals, and
bi-/tri-gram TF-IDF.

The linguistic feature differences of the two
groups have subtle differences in nature. A pos-
sible analysis that distinguishes the groups is that
there is a difference in the rhetorical strategies
most effective for undecided versus decided audi-
ences. Use of modals, subjectivity, and general
word choice are semantic features of an argument
that affect the perception of the content of the ar-
gument. Based on our results, these content-based
features are more important for undecided voters
than they are for decided voters. In comparison,
use of swear words, citing sources, and referring to
the opponent are stylistic features of an argument
that affect the perception of the debater producing
the argument. Based on our results, these style-
based features are not as important for undecided
voters as they are for decided voters. This ac-
count is consistent with the findings of Schill and
Kirk (2014) that undecided voters respond most to
content-rich rhetorical strategies, and the findings
of Vecchione et al. (2013); Sweeney and Gruber
(1984) that decided voters tend to selectively at-
tend to information in a message based on prior
attitudes. The account is also in line with exper-
iments conducted by Adams et al. (2011), which
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find that affiliated voters do not adjust their posi-
tions in response to a party’s actual policy state-
ments, but rather do adjust their positions based
on their subjective perceptions of the party.

5.1.2 Audience Feature Differences
The inclusion of certain audience features has
different effects on prediction accuracy be-
tween FROM-MIDDLE and FROM-OPPOSING voter
groups. As shown in Table 4, removing the
persuadability feature improves the accuracy for
FROM-OPPOSING from 67.22% to 67.52% when
all linguistic features are included, and improves
the accuracy from 68.21% to 68.32% when OP-
POSING* linguistic features are used. Similarly,
removing the matching ideology feature improves
the accuracy for FROM-OPPOSING from 67.22%
to 67.30% when all linguistic features are in-
cluded, and improves the accuracy from 68.21%
to 68.39% when OPPOSING* linguistic features
are used. The reverse is true for FROM-MIDDLE.
For this voter group, removing the persuadabil-
ity and matching ideology features decreases ac-
curacy from 69.01% to 68.33% and 68.99%, re-
spectively, when all lingusitic features are in-
cluded, and decreases the accuracy from 69.17%
to 69.16% and 68.60%, respectively, when MID-
DLE* features are included.

It should be noted that the best-performing over-
all feature set for FROM-OPPOSING includes nei-
ther the persuadability feature nor the matching
ideology feature. In contrast, all audience features
are present in the best-performing overall feature
set for FROM-MIDDLE. This difference suggests
that certain audience-level aspects are compara-
tively more predictive of vote outcomes for un-
decided voters. The result emphasizes the impor-
tance of considering audience factors for people
who are undecided with respect to an issue; in or-
der to understand vote behavior of the undecided
audience, it is critical to consider audience factors.

5.2 Influence of Audience Features

We perform ablation across linguistic features sep-
arately for when audience features are included
and for when they are not. Results in Table 5 show
that the linguistic features most important for
model performance differ when audience features
are present. For instance, experiments on voter
group FROM-OPPOSING show that including argu-
ment lexicon features improves performance from
67.22% to 67.52% when audience features are not

Accuracy of Models
FROM-
MIDDLE

FROM-
OPPOSING

Linguistic Features 66.95% 66.65%
- argument lexicon 66.22% 65.90%
- use of citations and
referring to opponent 67.20% 66.12%
- swear words 66.65% 66.65%
- subjectivity 66.03% 67.79%
All Features 69.01% 67.22%
- argument lexicon 68.46% 67.52%
- use of citations and
referring to opponent 69.17% 66.99%
- swear words 69.08% 67.20%
- subjectivity 68.76% 67.90%

Table 5: Accuracy results, for all features and lin-
guistic features. Remaining results are ablation stud-
ies, where ‘- feature’ denotes the removal of the fea-
ture. Underlined results are feature combinations that
improve performance over including all features.

included, while performance is decreased from
66.65% to 65.90% when audience features are in-
cluded. Comparatively, inclusion of the swear
words feature improves performance for FROM-
MIDDLE from 69.01% to 69.08% when audience
features are not included, but negatively impacts
performance from 66.95% to 66.65% when audi-
ence features are included.

We find that the best-performing sets of lin-
guistic features for FROM-OPPOSING and FROM-
MIDDLE differ when audience features are in-
cluded versus when they are not. The best-
performing set of linguistic features for FROM-
OPPOSING when audience features are not con-
sidered includes modals and bi-/tri-gram TF-IDF,
while these features are not present in the best-
performing set of features when all features are
considered (denoted by OPPOSING*). Similarly
for FROM-MIDDLE, the swear words feature is
not in MIDDLE*, while it is present in the best-
performing set of linguistic features when audi-
ence features are not considered.

These results are consistent with findings from
Durmus and Cardie (2018) and re-affirm the im-
portance of considering audience features when
analyzing linguistic effects of persuasion.
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6 Conclusion

In this paper, we separately examine what linguis-
tic and audience-level factors are most important
for predicting vote outcomes of previously unde-
cided and decided audiences. We show that differ-
ent linguistic features are critical for predicting the
successful side of persuasion of undecided versus
decided voters. We find that some audience fea-
tures that are important for predicting the side of
persuasion of undecided voters are not as helpful
in predicting persuasion of decided voters.

This paper examines the differences between
the undecided and decided audiences in persua-
sion, which has been under-studied in a computa-
tional framework. The results of our work validate
the importance of analyzing the undecided versus
decided audience separately.
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Abstract
This paper presents a first attempt at using
Walton’s argumentation schemes for annotat-
ing arguments in Swedish political text and as-
sessing the feasibility of using this particular
set of schemes with two linguistically trained
annotators. The texts are not pre-annotated
with argumentation structure beforehand. The
results show that the annotators differ both in
number of annotated arguments and selection
of the conclusion and premises which make up
the arguments. They also differ in their label-
ing of the schemes, but grouping the schemes
increases their agreement. The outcome from
this will be used to develop guidelines for fu-
ture annotations.

1 Introduction

Argumentation mining – the automatic recogni-
tion and classification of arguments and their com-
ponents in text – is a useful technology for a num-
ber of practical text-processing applications, both
commercial and academic, and in the latter case
not least as a component of research tools in the
digital humanities and social sciences.

Many different annotation schemes for argu-
ment analysis have been proposed in the litera-
ture (Lippi and Torroni, 2016; Macagno et al.,
2017; Visser et al., 2018; Song et al., 2014), and
a central concern in the context of argumentation
mining is to arrive at a scheme which is both ex-
pressive enough for the intended tasks and explic-
itly defined in a way which makes it amenable to
high-accuracy automatic processing.

Automatic linguistic annotation often requires
the use of a ground-truth data set – a gold stan-
dard – for evaluating – and often training – dif-
ferent kinds of algorithms and software. Since the
gold standard annotations will invariably need to
be introduced by humans, we require an annota-
tion scheme which human annotators can learn (in
a reasonable amount of time) to apply with high
accuracy and high inter-annotator agreement.

One of the most elaborate and extensive efforts
to devise a comprehensive set of argumentation
schemes is that by Walton et al. (2008), which
builds on a long line of works in philosophy and
law studies. Walton et al. (2008) further explic-
itly intend their schemes to be usable “in AI”. The
60 schemes (with additional sub-schemes in many
cases) presented in the book are given detailed,
formalized descriptions, and in the present paper
we describe and discuss the initial stage in an ef-
fort intended to evaluate the suitability and use-
fulness of this set of schemes for argumentation
mining.

As indicated above, a prerequisite for this is that
a sufficient amount of suitable text can be man-
ually annotated with high inter-annotator agree-
ment. Consequently, we have initiated an annota-
tion effort (the first of several), where a small set
of Swedish political texts (newspaper editorials)
have been annotated using the schemes of Walton
et al. (2008). To the best of our knowledge, this
is the first annotation study which applies Wal-
ton’s schemes directly to text, without any pre-
annotated structure step beforehand. In the present
paper, we present and discuss the results of this ex-
ercise, and outline what the next steps of this effort
should be, based on these results.

Related Work

In Walton et al. (2008) an argumentation scheme is
defined by a set of premises and a conclusion, and
a label for the scheme. For most schemes, there is
also a set of critical questions which are used for
identification and evaluation. Walton’s schemes,
or modified versions of them, have been used
to classify argumentation in many cases (Feng
and Hirst, 2011; Green, 2015; Song et al., 2014;
Lawrence and Reed, 2016). However, when an-
notating argumentation schemes, in these cases
the annotation has been done on already pre-
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segmented text, identified as containing argumen-
tation.

Visser et al. (2018) use Walton’s original
schemes for annotating nodes in an argumentation
structure. They reach an inter-annotator agreement
of κ = 0.723 (Cohen’s Kappa), but note that there
are some schemes that are difficult for the anno-
tators to distinguish, despite the use of a decision
tree based on Walton et al. (2008). The issue of
distinguishing schemes and the need for a taxon-
omy or classification of the schemes have been
also been discussed in Walton (2012), and there
have been many suggestions for this (Walton et al.,
2008; Walton and Macagno, 2015; Macagno et al.,
2017). Because of this, in addition to using the
original schemes, we also use groups suggested
in the classification system mentioned in Walton
et al. (2008).

2 Data Set Creation and Annotation

The Data Set

The data for this study were originally compiled
by Hedquist (1978), who investigated emotive lan-
guage1 in Swedish newspaper editorials. He se-
lected a total of 30 editorials from 6 newspapers,
all published in the period May–September 1973,
shortly before the Swedish national parliament
elections at the end of September 1973. The news-
papers were selected so as to reflect the five politi-
cal parties then represented in the Swedish parlia-
ment, and the editorials were selected on the basis
of topic, with two general and three specific topics
per newspaper. The total number of words in this
data set is about 19,000, for an average word count
per editorial of about 640.

For his investigation Hedquist annotated all
texts manually for emotive language, using a
scheme which he developed specifically for this
work. Together with the existing and planned ar-
gumentation annotation described in this paper,
this data set comprises a small but rich founda-
tion for future work on argumentation mining in
Swedish in particular, but also in more general
terms on the relationship between argument struc-
tures and sentiment.

Annotation Procedure

The editorials were annotated by two annotators
with solid training in linguistic analysis, master
students of linguistics at Uppsala University.

The instructions given to the annotators were
minimal. In preparation for the annotation task,
they were initially given three editorials, asked to
identify and classify all arguments in them manu-
ally according to Walton et al. (2008). After this
they met with the project leader, for a discussion
of differences and difficulties. Other than that, they
were expected to be able to understand the de-
scription of the argumentation schemes as given
by Walton et al. (2008), as it was believed that
somebody with their extensive training in linguis-
tics should be well equipped to understand and ap-
ply these descriptions, which are couched in terms
quite familiar to somebody who has been exposed
to linguistic semantics and pragmatics.

The annotation was done with the Araucaria
tool for argument analysis (Reed and Rowe,
2004) which has support for Walton’s argument
schemes. For the annotation, the 30 most common
schemes were used, as originally presented in Wal-
ton (2013). In Araucaria, for a given text, the an-
notator selects any consecutive passage of text, la-
bels it and possibly connects it to any other labeled
passage of text. From here on, these passages
are referred to as units. The available labels are
‘premise’ and ‘conclusion’. A premise can only
have one conclusion, but a unit can be annotated
multiple times. This is suitable for chained ar-
gumentation. After labeling, an argument scheme
is connected to a conclusion and one or more
premises, and these parts together make up the
argument. Araucaria also allows adding so-called
‘missing’ units if an annotator feels a conclusion
or premises are left unstated/implied.

3 Results

The results from the two annotators differ signifi-
cantly, both regarding what is annotated and how it
has been annotated. More specifically, they differ
both in numbers of arguments annotated and the
distributions of units, and they even differ in how
they use the annotation tool, which results in dif-
ferent structure of the file containing the argument

1The phenomena investigated and described by Hedquist
largely come under the heading of what is now generally re-
ferred to as sentiment analysis.
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Annotator 1 Annotator 2
No. of arguments 345 195
Avg. no. of premises per arg. 1.26 2.03
Premises, in text 395 380
Premises, missing 42 16
Conclusions, in text 292 194
Conclusions, missing 53 1
Total no. of units 782 591

Table 1: Annotation statistics

information, although the retrieved information is
the same.

The number of annotated argument instances
and units is shown in Table 1. Annotator 1 (A1)
has annotated about 150 more argument instances
than annotator 2 (A2), although the latter has an-
notated more premises on average. By inspection
it was observed that A1 often pairs a conclusion
with each of its premises into individual arguments
with one conclusion and one premise each, but as-
signs all of these arguments the same scheme. A2
usually includes all premises attached to a conclu-
sion as a single argument. This could be either a
difference in interpretation or usage of the tool, but
this may be the reason for the difference in the av-
erage number of premises.

The annotators have used the option of adding
missing units differently, with A1 having added
about 100 missing units and A2 17 as shown in
Table 1. The identification of implied conclusions
or premises is a well-known problem, and might
be the reason for this discrepancy. In Table 2
the statistics of multiple occurrences are shown.
A1 has both more units repeating as conclusions,
and occurring as both premise and conclusion.
On the other hand, A2 has 26 repeating premises
while A1 has none. Most of A2’s occurrences are
only repeating once, but A1 has many conclusions
which occur many times. This is related to the dif-
ference in how the annotators divide the premises
between arguments. If a conclusion has 6 premises
and A1 turns each conclusion-premise pair into a
separate argument, then the conclusion will occur
6 times.

Of the 30 schemes described by Walton (2013),
A1 uses 12 and A2 uses 21. Together they use
22 different schemes.2 Both annotators use 4–5
schemes for the majority of identified arguments,

223 of the annotated units of A1 are not marked with an
argument scheme and are thus not included.

with the rest of the schemes having only a few oc-
currences each. Even though A1 annotates more
argument instances, fewer schemes are used. Ta-
ble 3 shows the the used schemes and their occur-
rences for A1 and A2. The schemes ARGUMENT

FROM CONSEQUENCES and ARGUMENT FROM

SIGN are both heavily used by both annotators.
The description of these schemes are seen below.

ARGUMENT FROM SIGN:

Premise: A is true in this situation.

Premise: Event B is generally indicated as true when its

sign, A, is true in this kind of situation.

Conclusion: B is true in this situation.

ARGUMENT FROM CONSEQUENCES:

Premise: If A is brought about, then good (bad) conse-

quences will (may plausibly) occur

Conclusion: A should (not) be brought about.

From these descriptions it is seems that these
schemes could be applied to a wide range of ar-
gumentation, and this is probably why the annota-
tors have used them the most. Compared to some
of the descriptions of the other schemes, they are
also possibly easier to understand and therefore
easier to apply. But they are also very general, and
this raises the question in which cases an anno-
tator chooses the more specific scheme in favor
of a more general one. Interestingly, the scheme
A1 annotated the most (ARGUMENT FROM EVI-
DENCE TO A HYPOTHESIS) is only used 6 times
by A2. Likewise, A2’s most annotated scheme
(ARGUMENT FROM CORRELATION TO CAUSE)
is only used 5 times by A1. The descriptions of
these two schemes are seen below. These schemes
both describe correlation between events, and one
could possibly see the first as a subset of the sec-
ond. The similarities of the schemes are further ex-
plored in the next section.
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Annotator 1 Annotator 2
Units as both conclusion and premise 72 Units as both conclusion and premise 12
Units as repeating conclusion 80 Units as repeating conclusion 7
Units as repeating premises 0 Units as repeating premises 26

Table 2: Occurrences of units

Scheme A1 A2
Argument from Evidence to a Hypothesis 105 6
Argument from Consequences 90 20
Argument From Sign 47 22
Argument from Cause to Effect 30 18
Argument from Falsification of a Hypothesis 30 4
Argument from Commitment 11 3
Argument from Verbal Classification 9 15
Argument from Expert Opinion 8 7
Argument from Popular Opinion 7 12
Argument from Correlation to Cause 5 42
Argument from Analogy 2 1
Ethotic Argument 1 –
Argument from Popular Practice – 17
Argument from Position to Know – 8
Argument from Bias – 5
Causal Slippery Slope Argument – 4
Argument from Precedent – 3
Argument from an Established Rule – 2
Argument from Arbitrariness of a Verbal Classification – 2
Circumstantial Argument Against the Person – 2
Argument from Vagueness of a Verbal Classification – 1
Argument from an Exceptional Case – 1
Total 195 345

Table 3: Usage of schemes for Annotator 1 and 2

ARGUMENT FROM EVIDENCE TO A HYPOTHESIS:

Premise: If hypothesis A is true, then a proposition B,

reporting an event, will be observed to be true.

Premise: B has been observed to be true in a given instance .

Conclusion: A is true.

ARGUMENT FROM CORRELATION TO CAUSE:

Premise: There is a positive correlation between A and B.

Conclusion: A causes B.

4 Evaluation

In order to measure inter-annotator agreement (IA)
we use the measure in Equation 1 based on the
Sørensen–Dice coefficient, where a1 and a2 are
the sets of annotations from each annotator, and
m is the set of pairs of annotations from a1 and a2
that are matching (i.e. they are considered equiv-

alent). Annotations can be either units (spans of
text representing premises or conclusions) or ar-
guments (a conclusion with one or more spans).

c = 2 ∗ |m|/(|a1|+ |a2|) (1)

We don’t use measures such as Fleiss’ kappa or
Krippendorff’s alpha because these measures cal-
culate agreement over annotation tasks that con-
sist of assigning a discrete label or score to each
element in a set, which is different to annotat-
ing spans over continuous text. Previous work on
argumentation annotation such as as in Stab and
Gurevych (2017) uses them because their anno-
tation task is defined as marking whether pre-
defined spans of texts do or do not contain annota-
tions or units, but in our annotation task the anno-
tators themselves create the spans.
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To determine if two units are matching, the
amount of overlap between the strings represent-
ing the units is compared to a given threshold
α. The strings are defined as ranges of charac-
ter indices within the text. The amount of over-
lap is measured as the ratio between the length
of the longest common continuous substring to
both strings and the length of the longest of both
strings. For example, the units below have an over-
lap of 0.68.

Unit 1. 7:48 Utgången kan leda till regeringsbyte, men den

kommer inte att leda till någon förändring av trygghetspoli-

tiken i det svenska välfärdssamhälllet.3

‘The result might lead to a change of government, but it will

not lead to any change in the Swedish welfare state.’

Unit 2. den kommer inte att leda till någon förändring av

trygghetspolitiken i det svenska välfärdssamhälllet.

‘it won’t lead to any change in the Swedish welfare state.’

Two values of α are used in the experiments.
A strict one of 0.9, which can still account for
small differences in whitespace, and a more le-
nient threshold of 0.5. In order to compare how
well the annotators agree, the arguments are com-
pared unit by unit. First, the conclusions of the
arguments are compared, and if the conclusion
matches, the premises are compared. Given both
a matching conclusion and premise, the schemes
of the two matching arguments are compared. If a
unit occurs more than once, it will belong to dif-
ferent arguments. Each occurrence is thus treated
as a unique occurrence.

Conclusions

In Table 4 the number of matching conclusions is
shown. The IA is calculated as per Equation 1,
and is 0.26 for an α of 0.9. The average number
of matching conclusions per editorial is 2.37, with
two editorials having no matches and one having
seven matches.

α
Conclusions 0.9 0.5
m 71 92
IA 0.26 0.34

Table 4: IA and m for conclusions.

3The number at the beginning of the sentence is sentence
numbering present in the source of the texts.

Premises

Given a matching conclusion between two argu-
ments, the premises of the same arguments are
compared. Since the number of premises in an
argument can vary between the annotators, both
matches with all premises matching and at least
one is displayed in Table 5. With the full overlap
α, used for both premises and conclusions, the IA
is 0.56 for at least one matching premise. With the
same α, only 6 of the matching conclusions have
all premises matching. Using the 0.5 α, the IA is
0.71 for at least one matching premise, and 0.20 all
premises matching. The IA within all arguments is
low for both α.

α
At least one matching premise 0.9 0.5
m 20 33
IA, within matching conclusions 0.56 0.71
IA, within all arguments 0.07 0.12

All premises match
m 6 9
IA, within matching conclusions 0.17 0.20
IA, within all arguments 0.02 0.03

Table 5: IA and m for premises, given a matching con-
clusion.

It is important to note that even if two argu-
ments have a matching conclusion this does not
necessarily mean that they should have the same
premises, a conclusion can be reached through dif-
ferent premises and argumentation. This could ex-
plain why there are 71 matching conclusions, but
only 20 of them share at least one premise. An ex-
ample of this can be seen below:

Premise A1: den visar sig redan i form av kraftiga höjningar

av olje- och bensinpriserna. ‘It is already showing in the form

of increasing oil and gas prices.’

Premise A2: Vi är i det här landet inte särskilt vana att spara

på något. ‘We are not especially used to saving anything in

this country.’

Conclusion: Men nu är energikrisen inte långt borta

‘But now the energy crisis is not far away’

Scheme A1: ARGUMENT FROM SIGN

Scheme A2: ARGUMENT FROM CAUSE TO EFFECT

In the same way, a premise can be used for dif-
ferent conclusions. Table 6 shows the matching
premises, regardless of whether they have a match-
ing conclusion or not. There are 14 arguments
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α
At least one premise match 0.9 0.5
m 74 99
IA, within all arguments 0.27 0.37

All premises match
m 14 20
IA, within all arguments 0.05 0.07

Table 6: IA and m for only premises.

where all premises match. Of these 14 matches,
three have also a matching argumentation scheme.
This means that even if the premises match, there
is disagreement about which scheme they partic-
ipate in. The two following examples show this.
The first example is a match in both conclusion
and premises, but the schemes differ. The next ex-
ample has the same premise but different conclu-
sion and scheme. This indicates that a premise can
be used for different schemes, and result in differ-
ent conclusions.

Premise: Den är inte obegränsad

‘It is not unlimited.’

Conclusion: Allmänt sett är det nödvändigt att hushålla med

energin

‘It is widely considered necessary to economize energy.’

Scheme A1: ARGUMENT FROM CONSEQUENCES

Scheme A2: ARGUMENT FROM SIGN

Premise: En växling vid makten medför att vi inte

riskerar några socialistiska experiment under valperioden

utan kan bygga vidare på välfärdssamhällets grund.

‘A shift of power will result in us not risking any socialistic

experiment during the elected term and instead we can

further build on the foundations of the welfare society.’

Conclusion A1: Väljare bör rösta på oppositionen

‘Voters should vote for the opposition’

Conclusion A2: Rösta inte bort samverkan!

‘Do not vote away collaboration!’

Scheme A1: ARGUMENT FROM CONSEQUENCES

Scheme A2: CAUSAL SLIPPERY SLOPE ARGUMENT

Argument schemes

After finding which arguments match in conclu-
sion and premise, the argumentation schemes are
compared. Using 0.9 as the α, only 2 arguments
have a match in scheme, conclusion and premises.
The schemes in these two arguments are AR-
GUMENT FROM SIGN and ARGUMENT FROM

CAUSE TO EFFECT. Using 0.5 as α instead, there

are 4 matches. Three of them have only 1 premise
and they all overlap fully. The last one has half of
the premises matching.

Based on the low numbers of matching schemes
in the case where both conclusion and premise
match, conclusions and premises were compared
separately. Of all the matching conclusions, 9 have
the same scheme, see Table 7. Figure 1 shows how
the schemes co-occur when the conclusion is the
same. The schemes that match are the schemes
which are most commonly used by both annota-
tors.

α
Scheme matches 0.9 0.5
m 9 10
IA, within matching conclusion 0.25 0.22
IA, within all arguments 0.02 0.02

Table 7: IA and m for schemes, given a matching con-
clusion.

In Figure 1 we can see that ARGUMENT

FROM CONSEQUENCES and ARGUMENT FROM

POPULAR PRACTICE have a high co-occurrence,
compared to the others. This could be because the
annotators have have chosen different premises,
for the same conclusion and thus chosen different
schemes. The descriptions of these schemes are
shown below.
ARGUMENT FROM CONSEQUENCES:

Premise: If A is brought about, then good (bad) conse-

quences will (may plausibly) occur.

Conclusion: A should (not) be brought about.

ARGUMENT FROM POPULAR PRACTICE:

Premise: If a large majority (everyone, nearly everyone, etc.)

does A, or acts as though A is the right (or an acceptable)

thing to do, then A is a prudent course of action.

Premise: A large majority acts as though A is the right thing

to do.

Conclusion: A is a prudent course of action.

It seems that the difference between these
schemes is dependent on the reason for a proposed
action. Should it be done because there is a de-
sired outcome (Consequences) or is the right thing
to do because it is a popular practice? An example
of this disagreement is seen below. Possibly this
example could be argued to be both schemes.
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Figure 1: Co-occurrence matrix for the schemes with the same conclusion (α 0.9)

Premise: Den höga arbetslösheten i Sverige är inte accept-

abel ur några synpunkter, detta måste slås fast med skärpa.

‘The high unemployment rate in Sweden is not acceptable

from any angle, this must be firmly established.’

Conclusion: Att skaffa fram nya jobb, måste vara den vikti-

gaste uppgiften för närvarande. ‘To create new jobs must be

the most important task for now.’

Scheme A1: ARGUMENT FROM CONSEQUENCES

Scheme A2: ARGUMENT FROM POPULAR PRACTICE

As mentioned above, matching premises were
also compared, regardless of conclusions. One
could expect this to generate more scheme
matches, as similar premises would possibly be
used in similar kinds of argumentation. However,
as noted in the previous section, of all the 540 ar-
guments, only 14 have all premises matching. Out
of these, only 3 have the same scheme, as com-
pared to 9 scheme matches for the conclusions.

Because of the noted difficulty of distinguishing
the schemes, both here and in previous research,
and the low number of matches, the schemes were
divided into groups and these groups were com-
pared instead. This division is suggested by Wal-

ton et al. (2008) as a classification system for the
schemes.

α
Matching schemes 0.9 0.5
m 3 7
IA, within matching 0.08 0.15
IA, within all arguments 0.01 0.03
Abductive reasoning 2 5
Casual reasoning 1 1
Practical reasoning 0 1

Table 8: Matching schemes with the new groups of
schemes, given a matching conclusion and at least one
premise.

Using the new groups results in more match-
ing schemes, but still the numbers are low for a
match of both conclusion and premise, see Ta-
ble 8. Table 9 shows the same numbers but for only
conclusions. The co-occurrence matrix is again
showed for an α of 0.9 and only conclusions, see
Figure 2. Most noteworthy are the 10 matches
in the ABDUCTIVE REASONING group and the
17 co-occurrences between the groups ARGU-
MENTS FROM POPULAR PRACTICE and PRAC-
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Figure 2: Co-occurrence matrix for the schemes in new groups, with the same conclusion (α 0.9)

α
Matching schemes 0.9 0.5
m 17 20
IA, within matching conclusions 0.48 0.43
IA, within all arguments 0.06 0.07
Abductive reasoning 10 12
Casual reasoning 6 6
Practical reasoning 1 2

Table 9: Matching schemes with the new groups of
schemes, only conclusions.

TICAL REASONING. This mismatch in groups is
due to the previously discussed co-occurrence of
the schemes ARGUMENT FROM CONSEQUENCES

and ARGUMENT FROM POPULAR PRACTICE.
The former scheme is in the group PRACTICAL

REASONING and the latter scheme is in the ARGU-
MENTS FROM POPULAR PRACTICE group, thus
transferring the co-occurrences to the new groups.

Again, a comparison of the schemes in the new
groups but for only matching premises was done.
This however only led to 4 scheme matches and
no pattern in the co-occurrences.

5 Conclusions and Future Work

In this first annotation exercise, we wanted to in-
vestigate whether annotators with a strong back-

ground in linguistics but who were given lit-
tle explicit instruction for this specific annota-
tion task would be able to recover the argumen-
tation schemes described by Walton et al. (2008).
This turned out not to be the case, with the an-
notators agreeing neither on whole arguments nor
on the units and schemes which make them up.4

This could be for at least three reasons: (1) that
the annotators would have needed more detailed
and precise instructions; (2) that the argumenta-
tion schemes themselves are too difficult to re-
cover from free natural text (despite their seeming
formal characterization); or (3) that the annotation
task should be structured differently, in a first step
where spans representing argument instances are
identified followed by a second step where the in-
stances and their components are labeled.5

Some of the differences between the annotators
would have been avoided if they had more spe-

4The use of only two annotators possibly influenced the
result, making it difficult to conclude when we are dealing
with ‘normal’ disagreement or not.

5It was suggested by the anonymous reviewers that this
would make for more effective annotation and higher inter-
annotator agreement. We are not aware of any strong argu-
ments in the literature unequivocally supporting this view, nor
of any empirical studies comparing the end-to-end efficiency
and efficacy of these two annotation workflows while con-
trolling for other potentially relevant variables. We note this
as an interesting topic for future research.
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cific instructions for the tool. More strict and de-
tailed instructions for the annotation itself could
probably improve the inter-annotator agreement,
but might come with a loss of information. For ex-
ample, a rule such as marking sentences instead
of spans would result in some loss of informa-
tion, since an argument might not be restricted
to sentences. However, most of the disagreements
come from differences in the interpretation of ar-
gument components and schemes, as shown in the
examples in the previous section. For example, the
same premises and conclusions are used in differ-
ent schemes, and a single premise is used more
than one scheme. In order to minimize informa-
tion loss but achieve high inter-annotator agree-
ment a necessary next step in annotating argumen-
tation needs to be a discussion of what should be
marked as premises and conclusions and why the
annotators have made the choices they did.

Interpretation seems also to be the reason for
the difference in the annotation of the argumen-
tation schemes, although the low inter-annotator
agreement in the argument components evaluated
before the schemes might influence this. If the an-
notators were given already annotated units they
would possibly agree more. The results of Visser
et al. (2018) indicate this, where they use already
predefined nodes and reach a high inter-annotator
agreement.

As previously shown, and also observed by oth-
ers (Walton and Macagno, 2015; Macagno et al.,
2017), the original schemes can be difficult to dis-
tinguish from each other. If they are to be used by
annotators, then they need better instructions on
when to use which scheme. As the post-annotation
grouping of schemes improved agreement, per-
haps it would be effective to collapse them already
in advance, instructing annotators to use coarser
groupings in cases of doubt.

For the immediate future we plan to design two
annotation exercises to follow up on the experi-
ment described in this paper and to address some
of the questions raised above. Further, the exer-
cises will be carried out using two different anno-
tation workflows. In the first exercise, the annota-
tors will be instructed to use the schemes of Wal-
ton et al. (2008), but this time according to an ex-
plicit annotation manual. In the second exercise
the annotators will be asked to annotate the same
texts according to some other proposed scheme,
possibly a less fine-grained version of the original

schemes as this was shown to have a positive ef-
fect on the inter-annotator agreement, but the ex-
act scheme to be used remains to be determined.
We will also organize two versions of each exer-
cise, one corresponding to the previous annotation
round, where annotatoras are asked to identify ar-
gumentation spans and classify them in one opera-
tion, and another where argumentation span iden-
tification is separated from labeling of schemes
and components.

In all cases we plan to employ more than two
annotators and there will be a different set of an-
notators for each of the four annotation setups.
The texts to be annotated will include the edito-
rials used for the work described in this paper, but
we may also decide to extend the data set. Hope-
fully, the planned experiments will allow us to gain
a better understanding of the advantages and dis-
advantages of different schemes for argumentation
annotation, as well as for alternative organizations
of the annotation workflow.
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