@inproceedings{gangula-etal-2019-detecting,
title = "Detecting Political Bias in News Articles Using Headline Attention",
author = "Gangula, Rama Rohit Reddy and
Duggenpudi, Suma Reddy and
Mamidi, Radhika",
editor = "Linzen, Tal and
Chrupa{\l}a, Grzegorz and
Belinkov, Yonatan and
Hupkes, Dieuwke",
booktitle = "Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4809",
doi = "10.18653/v1/W19-4809",
pages = "77--84",
abstract = "Language is a powerful tool which can be used to state the facts as well as express our views and perceptions. Most of the times, we find a subtle bias towards or against someone or something. When it comes to politics, media houses and journalists are known to create bias by shrewd means such as misinterpreting reality and distorting viewpoints towards some parties. This misinterpretation on a large scale can lead to the production of biased news and conspiracy theories. Automating bias detection in newspaper articles could be a good challenge for research in NLP. We proposed a headline attention network for this bias detection. Our model has two distinctive characteristics: (i) it has a structure that mirrors a person{'}s way of reading a news article (ii) it has attention mechanism applied on the article based on its headline, enabling it to attend to more critical content to predict bias. As the required datasets were not available, we created a dataset comprising of 1329 news articles collected from various Telugu newspapers and marked them for bias towards a particular political party. The experiments conducted on it demonstrated that our model outperforms various baseline methods by a substantial margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gangula-etal-2019-detecting">
<titleInfo>
<title>Detecting Political Bias in News Articles Using Headline Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rama</namePart>
<namePart type="given">Rohit</namePart>
<namePart type="given">Reddy</namePart>
<namePart type="family">Gangula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suma</namePart>
<namePart type="given">Reddy</namePart>
<namePart type="family">Duggenpudi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radhika</namePart>
<namePart type="family">Mamidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language is a powerful tool which can be used to state the facts as well as express our views and perceptions. Most of the times, we find a subtle bias towards or against someone or something. When it comes to politics, media houses and journalists are known to create bias by shrewd means such as misinterpreting reality and distorting viewpoints towards some parties. This misinterpretation on a large scale can lead to the production of biased news and conspiracy theories. Automating bias detection in newspaper articles could be a good challenge for research in NLP. We proposed a headline attention network for this bias detection. Our model has two distinctive characteristics: (i) it has a structure that mirrors a person’s way of reading a news article (ii) it has attention mechanism applied on the article based on its headline, enabling it to attend to more critical content to predict bias. As the required datasets were not available, we created a dataset comprising of 1329 news articles collected from various Telugu newspapers and marked them for bias towards a particular political party. The experiments conducted on it demonstrated that our model outperforms various baseline methods by a substantial margin.</abstract>
<identifier type="citekey">gangula-etal-2019-detecting</identifier>
<identifier type="doi">10.18653/v1/W19-4809</identifier>
<location>
<url>https://aclanthology.org/W19-4809</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>77</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Political Bias in News Articles Using Headline Attention
%A Gangula, Rama Rohit Reddy
%A Duggenpudi, Suma Reddy
%A Mamidi, Radhika
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Belinkov, Yonatan
%Y Hupkes, Dieuwke
%S Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F gangula-etal-2019-detecting
%X Language is a powerful tool which can be used to state the facts as well as express our views and perceptions. Most of the times, we find a subtle bias towards or against someone or something. When it comes to politics, media houses and journalists are known to create bias by shrewd means such as misinterpreting reality and distorting viewpoints towards some parties. This misinterpretation on a large scale can lead to the production of biased news and conspiracy theories. Automating bias detection in newspaper articles could be a good challenge for research in NLP. We proposed a headline attention network for this bias detection. Our model has two distinctive characteristics: (i) it has a structure that mirrors a person’s way of reading a news article (ii) it has attention mechanism applied on the article based on its headline, enabling it to attend to more critical content to predict bias. As the required datasets were not available, we created a dataset comprising of 1329 news articles collected from various Telugu newspapers and marked them for bias towards a particular political party. The experiments conducted on it demonstrated that our model outperforms various baseline methods by a substantial margin.
%R 10.18653/v1/W19-4809
%U https://aclanthology.org/W19-4809
%U https://doi.org/10.18653/v1/W19-4809
%P 77-84
Markdown (Informal)
[Detecting Political Bias in News Articles Using Headline Attention](https://aclanthology.org/W19-4809) (Gangula et al., BlackboxNLP 2019)
ACL