@inproceedings{tsai-etal-2019-adversarial-attack,
title = "Adversarial Attack on Sentiment Classification",
author = "Tsai, Yi-Ting and
Yang, Min-Chu and
Chen, Han-Yu",
editor = "Linzen, Tal and
Chrupa{\l}a, Grzegorz and
Belinkov, Yonatan and
Hupkes, Dieuwke",
booktitle = "Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4824",
doi = "10.18653/v1/W19-4824",
pages = "233--240",
abstract = "In this paper, we propose a white-box attack algorithm called {``}Global Search{''} method and compare it with a simple misspelling noise and a more sophisticated and common white-box attack approach called {``}Greedy Search{''}. The attack methods are evaluated on the Convolutional Neural Network (CNN) sentiment classifier trained on the IMDB movie review dataset. The attack success rate is used to evaluate the effectiveness of the attack methods and the perplexity of the sentences is used to measure the degree of distortion of the generated adversarial examples. The experiment results show that the proposed {``}Global Search{''} method generates more powerful adversarial examples with less distortion or less modification to the source text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tsai-etal-2019-adversarial-attack">
<titleInfo>
<title>Adversarial Attack on Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi-Ting</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Chu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han-Yu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a white-box attack algorithm called “Global Search” method and compare it with a simple misspelling noise and a more sophisticated and common white-box attack approach called “Greedy Search”. The attack methods are evaluated on the Convolutional Neural Network (CNN) sentiment classifier trained on the IMDB movie review dataset. The attack success rate is used to evaluate the effectiveness of the attack methods and the perplexity of the sentences is used to measure the degree of distortion of the generated adversarial examples. The experiment results show that the proposed “Global Search” method generates more powerful adversarial examples with less distortion or less modification to the source text.</abstract>
<identifier type="citekey">tsai-etal-2019-adversarial-attack</identifier>
<identifier type="doi">10.18653/v1/W19-4824</identifier>
<location>
<url>https://aclanthology.org/W19-4824</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>233</start>
<end>240</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Attack on Sentiment Classification
%A Tsai, Yi-Ting
%A Yang, Min-Chu
%A Chen, Han-Yu
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Belinkov, Yonatan
%Y Hupkes, Dieuwke
%S Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F tsai-etal-2019-adversarial-attack
%X In this paper, we propose a white-box attack algorithm called “Global Search” method and compare it with a simple misspelling noise and a more sophisticated and common white-box attack approach called “Greedy Search”. The attack methods are evaluated on the Convolutional Neural Network (CNN) sentiment classifier trained on the IMDB movie review dataset. The attack success rate is used to evaluate the effectiveness of the attack methods and the perplexity of the sentences is used to measure the degree of distortion of the generated adversarial examples. The experiment results show that the proposed “Global Search” method generates more powerful adversarial examples with less distortion or less modification to the source text.
%R 10.18653/v1/W19-4824
%U https://aclanthology.org/W19-4824
%U https://doi.org/10.18653/v1/W19-4824
%P 233-240
Markdown (Informal)
[Adversarial Attack on Sentiment Classification](https://aclanthology.org/W19-4824) (Tsai et al., BlackboxNLP 2019)
ACL
- Yi-Ting Tsai, Min-Chu Yang, and Han-Yu Chen. 2019. Adversarial Attack on Sentiment Classification. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 233–240, Florence, Italy. Association for Computational Linguistics.