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Abstract

Automatic identification and expansion of
ambiguous abbreviations are essential for
biomedical natural language processing ap-
plications, such as information retrieval and
question answering systems. In this paper,
we present DEep Contextualized Biomedical
Abbreviation Expansion (DECBAE) model.
DECBAE automatically collects substantial
and relatively clean annotated contexts for 950
ambiguous abbreviations from PubMed ab-
stracts using a simple heuristic. Then it uti-
lizes BioELMo (Jin et al., 2019) to extract
the contextualized features of words, and feed
those features to abbreviation-specific bidi-
rectional LSTMs, where the hidden states of
the ambiguous abbreviations are used to as-
sign the exact definitions. Our DECBAE
model outperforms other baselines by large
margins, achieving average accuracy of 0.961
and macro-F1 of 0.917 on the dataset. It also
surpasses human performance for expanding a
sample abbreviation, and remains robust in im-
balanced, low-resources and clinical settings.

1 Introduction

Abbreviations are shortened forms of text-strings.
They are prevalent in biomedical literature such as
scientific articles, clinical notes and user queries in
information retrieval systems. Abbreviations can
be ambiguous (e.g.: ER can refer to estrogen re-
ceptor, endoplasmic reticulum, emergency room
etc.), especially when they appear in short or pro-
fessional texts where the definitions are not given.
For instance, about 15% of PubMed queries in-
clude abbreviations (Islamaj Dogan et al., 2009),
and about 14.8% of all tokens in a clinical note
dataset are abbreviations (Xu et al., 2007). In
both cases, the definitions of the abbreviations are
rarely provided. Thus, automatic expansion of am-
biguous abbreviations to their full forms is vital

in biomedical natural language processing (NLP)
systems.

In this paper, we focus on the cases where defi-
nitions of ambiguous abbreviations are not directly
available in the contexts, so reasoning over the
contexts is required for disambiguation. Under the
conditions where definitions are provided in the
contexts, one can easily extract them using rule-
based methods.

We present DEep Contextualized Biomedi-
cal Abbreviation Expansion (DECBAE) model.
DECBAE uses a simple heuristic to automati-
cally construct large supervised disambiguation
datasets for 950 abbreviations from PubMed ab-
stracts: In scientific writing, authors define abbre-
viations the first time they are used, and the same
abbreviations in the following sentences have the
same definitions as those of the first ones. We ex-
tract all the sentences containing the same abbre-
viations in each PubMed abstract, and use the def-
inition given in the first sentence as the full form
label of abbreviations in the following sentences.
We group the definitions for each abbreviation and
formulate abbreviation expansion as a classifica-
tion task, where input is an ambiguous abbrevia-
tion with its context, and the output is one of its
possible definitions.

Recent breakthroughs of language models (LM)
pre-trained on large corpora like ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2018)
clearly show that unsupervised LM pre-training
can vastly improve performance of downstream
models. To fully utilize the knowledge encoded
in PubMed abstracts, DECBAE uses BioELMo
(Jin et al., 2019), a domain adapation verison of
ELMo, to embed the words. After the embed-
ding layer, DECBAE applies abbreviation-specific
bidirectional LSTM (biLSTM) classifiers to do the
abbreviation expansion, where the biLSTM pa-
rameters are trained separately for each abbrevi-
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ation. We train DECBAE from the automatically
collected dataset of 950 ambiguous abbreviations.

At inference time, DECBAE feeds the
BioELMo embeddings of the whole sentence
and uses the corresponding abbreviation-specific
biLSTM classifiers to perform disambiguation
of abbreviations in the sentence. We show that
DECBAE outperforms other baselines by large
margins and even performs better than single
human expert. Although training instances of
DECBAE are collected from PubMed, it covers
85% of clinically related abbreviations mentioned
in a previous work (Xu et al., 2012). Moreover,
DECBAE remains robust in low-resource and
imbalanced settings.

2 Related Work

Contextualized word embeddings: Recently,
contextualized word representations pre-trained
by large corpora like ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) significantly im-
prove the performance of various NLP tasks.
ELMo is a pre-trained biLSTM language model.
ELMo word embeddings are calculated by a
weighted sum of the hidden states of each biLSTM
layer. The weights are task-specific learnable
parameters while biLSTM layers are fixed. In-
domain trained contextual embeddings further im-
prove the performance on domain-specific tasks.
In this paper, we use BioELMo, which is a
biomedical version of ELMo trained on 10M
PubMed abstracts (Jin et al., 2019). BioELMo
outperforms general ELMo by large margins on
several biomedical NLP tasks.

We don’t use BERT for contextualized embed-
dings due to its fine-tuning nature: users just need
to download 1 BioELMo and N abbreviation-
specifc biLSTM weights to run DECBAE locally,
which takes significantly less disk size than N
fine-tuned BERTs for each abbreviation. N is the
number of abbreviations.

Word sense disambiguation (WSD): The goal
of WSD is to determine the correct sense of words
in different contexts. Abbreviation expansion is a
specific case of WSD where the ambiguous words
are abbreviations. In this paper, we use abbre-
viation expansion and abbreviation disambigua-
tion interchangeably. Several human-annotated
datasets are available for supervised WSD (Nav-
igli et al., 2013; Camacho-Collados et al., 2016;
Raganato et al., 2017b). However, human anno-

tations could be expensive, especially in domain
specific settings. To address this problem, some
automatic dataset collection methods have been
proposed (Yu et al., 2007; Ciosici et al., 2019),
where abbreviations are automatically labeled if
they are defined previously in the same docu-
ments. We use a similar approach in this work.

Peters et al. (2018) report that just matching
the ELMo embedding of the target words with the
nearest sense representations, calculated by aver-
aging their ELMo embeddings, leads to compara-
ble WSD performance with state-of-the-art mod-
els using hand crafted features (Iacobacci et al.,
2016) or task-specific biLSTM trained with mul-
tiple tasks (Raganato et al., 2017a). Instead of
searching the nearest contextualized embeddings
neighbors of the abbreviation and definitions, we
model abbreviation expansion as classification.

Biomedical abbreviation expansion: Various
methods have been introduced for automatically
expanding biomedical abbreviations. Yu et al.
(2007) train naive Bayes and SVM classifiers with
bag-of-word features on an automatically col-
lected dataset from PubMed. Some works dis-
ambiguate abbreviations to their senses in con-
trolled vocabularies like Medical Subject Head-
ings1 (MeSH) and Unified Medical Language Sys-
tem2 (UMLS). Xu et al. (2015) use pooled neigh-
bor word embeddings of the abbreviations as fea-
tures to train SVM classifiers for clinical abbrevi-
aiton disambiguation. Jimeno-Yepes et al. (2011)
introduced MSH WSD dataset to test the perfor-
mance of supervised biomedical WSD systems
and several supervised models have been proposed
on it (Antunes and Matos; Yepes, 2017). Re-
cently Pesaranghader et al. (2019) presented deep-
BioWSD which sets new state-of-the-art perfor-
mance on it. DeepBioWSD uses a single biLSTM
encoder for disambiguation of all abbreviations by
calculating the pairwise similarity between con-
text representations and sense representations.

To the best of our knowledge, DECBAE is the
first model that uses deep contextualized word em-
beddings for biomedical abbreviation expansion.

3 Methods

Figure 1 shows the architecture of DECBAE. Dur-
ing training, we first construct abbreviation ex-

1https://www.nlm.nih.gov/mesh
2https://www.nlm.nih.gov/research/

umls/

https://www.nlm.nih.gov/mesh
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
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Figure 1: Architecture of DECBAE. Training and inference phases are illustrated in the left and right boxes,
respectively. The PubMed corpus is used in training BioELMo (Jin et al., 2019) and collecting the disambiguation
dataset. We train a separate biLSTM classifier for each abbreviation, and the specific pre-trained classifier is
retrieved in inference phase.

pansion datasets from PubMed (§3.1). We use
BioELMo (§3.2) to get the contextualized rep-
resentations of words, and train a specific biL-
STM classifier (§3.3) for each abbreviation. Dur-
ing inference (§3.5), we first detect whether there
are ambiguous abbreviations in input sentences by
the expert-curated ambiguous abbreviation vocab-
ulary. If so, we use BioELMo and the correspond-
ing abbreviation-specific biLSTM classifiers to do
the disambiguation.

3.1 Dataset Collection

Figure 2 shows our approach of automatically col-
lecting disambiguation dataset. For each abstract,
we first detect and extract the pattern of “Defini-
tion (Abbreviation)”, e.g.: “endoplasmic reticulum
(ER)”. Then we collect all the following sentences
that contain the abbreviation, and label them with
the definition.

This would generate a noisy label set due
to the variations of writing the same definition
(e.g.: emergency department and emergency de-
partments). To group the same definitions to-
gether, we use MetaMap-derived MeSH terms
(Demner-Fushman et al., 2017) as features of def-
initions and define the MeSH similarity between
definition a and definition b as:

s =
|Ma ∩Mb|√
|Ma| |Mb|

whereMa andMb are the MeSH term sets of def-
inition a and b, respectively. We group those def-
initions with high MeSH similarity and close edit
distance by heuristic thresholds.

We collected 1970 abbreviations. However, due
to the unsupervised nature of the collection pro-
cess, some abbreviations are invalid or not am-
biguous. For this, one biomedical expert3 filtered
the abbreviations we found, based on 1) Validity:
abbreviations should be biomedically meaningful;
2) Ambiguity: abbreviations should have mul-
tiple possible definitions, and prevalence of the
dominant one should be < 99%. After the filter-
ing, there are 950 valid ambiguous abbreviations.
Their statistics are shown in Table 1. We split the
instances of each abbreviation into training, devel-
opment and test sets: If there is more than 10k in-
stances, we randomly select 1k for both develop-
ment and test sets. Otherwise, we randomly select
10% of all instances for both development and test
sets.

3.2 BioELMo

BioELMo is a biomedical version of ELMo pre-
trained on 10 millions of PubMed abstracts (Jin
et al., 2019). It serves as a contextualized feature
extractor in DECBAE: given an input sentence of

3A post-doctoral fellow with a Ph.D. degree in biology.
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The endoplasmic reticulum: structure, function and response to cellular signaling.

Abstract
The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including
calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by
distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute
to the overall architecture and dynamics of the ER have been identified, but many questions remain as to
how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development
of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain,
and how coordinated responses add to the layers of regulation in this dynamic organelle.

Context: … functions of the ER are performed by … Definition: endoplasmic reticulum
Context: … dynamics of the ER have been identified … Definition: endoplasmic reticulum 
Context: … as to how the ER changes shape … Definition: endoplasmic reticulum
Context: … dynamics of the ER, what questions … Definition: endoplasmic reticulum

Automatically generate training contexts of abbreviations, labeled by their extracted definitionsFigure 2: An example of automatically generated training instances for disambiguation from the abstract of
Schwarz and Blower (2016). In this case, we extract “endoplasmic reticulum” as the definition for all ER mentions
in the abstract, and store those instances to the dataset.

Statistic Whole Random Imbalanced Low-resources Clinical Human

# of all abbreviations 950 100 42 28 11 1
Average # of instances 8790.0 6564.3 19493.1 958.8 28642.8 8312.0
Average # of possible definitions 4.1 3.7 2.3 2.2 8.5 4.0
Average % of dominant definition 64.1 63.5 96.7 66.7 53.3 63.8

Table 1: Statistics of the automatically generated abbreviation disambiguation dataset and its subsets.

L tokens:

input = [t1; t2; ...; tL]

We use BioELMo to embed it to

E = [e1; e2; ...; eL] ∈ RL×D

where e ∈ RD is the token embedding and D is
the embedding dimension4.

3.3 Abbreviation-specific biLSTM Classifiers

For each abbreviation, we train a specific biLSTM
classifier, denoted as biLSTMi for abbreviation
i. We feed the BioELMo representations of sen-
tences containing abbreviation i to biLSTMi:

biLSTMi(E) = [h1;h2; ...;hL] ∈ RL×2H

where h ∈ R2H is the concatenation of forward
and backward hidden states of the biLSTM. We
take as input the concatenated hidden states of the
abbreviation i (i.e. the ambiguous token) ha and
use several feed-forward neural network (FFN)

4Note that it’s after scaling and averaging the 3 BioELMo
layers using task-specific weights.

layers with softmax output unit to predict its defi-
nition:

p(defk | input) ∝ exp(wT
k FFNi(ha))

where wk is the learnt weight vector correspond-
ing to definition k, and defk is the k-th definition
of abbreviation i in our dataset. Similarly, we train
FFN separately for different abbreviations.

3.4 Training

The weights of BioELMo are pre-trained and
fixed, while the averaging weights and scal-
ing factor of BioELMo embeddings are trained
separately for each abbreviation along with the
abbreviation-specific biLSTM classifiers. We
use Adam (Kingma and Ba, 2014) to optimize
the cross-entropy loss of the predicted label and
ground-truth label.

3.5 Inference

At inference time, we denote the tokenized input
sentence as [t1; t2; ...; tL] and our ambiguous ab-
breviation set as A. If ∃tj ∈ A, we run DECBAE
to expand the tj : First, we use BioELMo to com-
pute the representations of all the input tokens to
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E = [e1; e2; ...; eL]. The trained biLSTM for ab-
breviation tj , denoted as biLSTMtj , is retrieved
and used to calculate the hidden states given the
BioELMo embeddings of the input sentence:

biLSTMtj (E) = [h1;h2; ...;hL] ∈ RL×2H

Then htj , which is the concatenated hidden states
of the ambiguous abbreviation tj , is used for
disambiguation through the trained abbreviation-
specific FFN:

Definition(tj) = defargmaxk wT
k FFNtj (htj

)

4 Experiments

4.1 Baseline Settings

A trivial baseline is to predict the majority of def-
inition for all cases, which could still lead to high
accuracy in severely imbalanced datasets. We
denote this method as Majority. We also test
other baseline settings of different feature learn-
ing schemes. They are all followed by several FFN
layers and a softmax output unit.

Bag-of-words: Following most of the previous
works, we use bag-of-words features to represent
the context by c ∈ R|V|, where |V| is the vocabu-
lary size.

BioELMo: We take the BioELMo embeddings
of the ambiguous abbreviations as input features.

biLSTM: We use biomedical w2v (Moen and
Ananiadou) as word embeddings and train task-
specific biLSTMs and use the hidden states of the
ambiguous abbreviations as input features.

We also measure the human performance: due
to limitation of resources, we just study single-
expert performance on one sampled abbreviation.
For this, the expert is shown with the test sen-
tences, and asked to classify the ambiguous abbre-
viation to its possible definitions. An ensemble of
experts will obviously generate better results, so
our single-human results just represent the lower
bound of human performance.

4.2 Subset Settings

We report the model performance on different sub-
sets of our dataset. Statistics of those datasets are
shown in Table 1.

Random samples: It’s computationally expen-
sive5 and unnecessary to test the models on all 950

5 The rate-determining step is BioELMo due to its large
size and recurrent nature.

abbreviations. Instead, we use randomly sampled
100 abbreviations to represent the whole set.

Imbalanced samples: We define abbreviations
whose dominant definitions have over 95% fre-
quency as imbalanced samples. Multi-label clas-
sification with imbalanced classes is considered as
a hard machine learning task.

Low-resources samples: We define abbrevia-
tions that have less than 1k training instances as
low-resources samples. It’s motivated by the fact
that most biomedical datasets are typically limited
by scale, so models that can still perform well un-
der low-resources settings have the potential to be
applied in real world settings.

Clinical samples: Though our abbreviations
are collected from PubMed abstracts, we have in-
cluded 11 out of 13 of clinical ambiguous abbre-
viations mentioned in a previous work of clinical
abbreviation disambiguation (Xu et al., 2012). We
also test our models on the subset of these 11 clin-
ically related abbreviations.

Testing sample for human expert: We test hu-
man performance on one abbreviation (DAT), due
to limited resources. The statistics of DAT abbre-
viation expansion dataset are close to the averages
of the whole dataset, as shown in Table 1. Possible
definitions of DAT include: 1) Dopamine trans-
porter (63.9%); 2) Direct antiglobulin test (5.8%);
3) Direct agglutination test (5.8%); 4) Dementia
of the Alzheimer type (24.5%).

4.3 Evaluation Metrics
We model abbreviation expansion as a multi-label
classification task, and use the following metrics
to measure the performance of different models:

Accuracy: Accuracy is defined as the propor-
tion of right predictions in all predictions. Most of
the definition labels are imbalanced, so accuracy
could be misleadingly high for a trivial majority
solution in these cases, thus may not reflect the
real capability of models.

Macro-F1: In multi-label classification, macro-
F1 is calculated as an unweighted average of F1
score for each class. Class-wise F1 score is de-
fined as follows:

F1 = 2 · precision · recall
precision + recall

where precision and recall are calculated for each
class.

Kappa Statistic: Cohen’s kappa was origi-
nally introduced as a metric to measure inter-rater
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Figure 3: Confusion matrix for the predictions of DECBAE (left) and the human expert (right). Def. 1: dopamine
transporter; Def. 2: direct antiglobulin test; Def. 3: direct agglutination test; Def. 4: dementia of the Alzheimer
type.

Model Random Set Imbalanced Set Low-resources Set Clinical Set Human Set

Majority

Accuracy 63.6± 21.0† 96.7± 1.0† 67.0± 15.6† 53.3± 25.7† 63.9
Macro-F1 28.3± 14.9† 45.4± 8.8† 37.2± 8.8† 12.0± 10.6† 19.5
Kappa Statistic 0.0± 0.0† 0.0± 0.0† 0.0± 0.0† 0.0± 0.0† 0.0

BoW-FFN

Accuracy 84.4± 11.2† 97.5± 1.7† 89.6± 7.5† 76.1± 12.5† 84.3
Macro-F1 73.1± 17.1† 71.5± 19.9† 83.4± 14.6† 57.9± 14.2† 71.9
Kappa Statistic 63.8± 25.3† 50.4± 33.7† 71.1± 24.8† 60.6± 8.9† 69.6

BioELMo

Accuracy 94.1± 7.2† 96.3± 15.3 98.1± 2.7 91.1± 8.4 97.1
Macro-F1 86.0± 17.4† 81.3± 23.5† 95.4± 9.3 75.5± 21.7 92.6
Kappa Statistic 86.1± 19.8† 73.2± 34.2† 93.2± 10.8† 86.6± 9.3 94.6

biLSTM

Accuracy 88.0± 16.8† 98.0± 1.9† 92.7± 10.5† 88.2± 8.2† 97.3
Macro-F1 77.1± 26.0† 70.2± 27.0† 82.9± 24.5† 68.8± 26.1 93.2
Kappa Statistic 69.3± 37.2† 49.1± 45.7† 70.4± 41.5† 70.5± 35.3 94.9

DECBAE

Accuracy 96.1± 5.5 98.9± 1.4 98.7± 2.2 95.1± 3.3 98.4
Macro-F1 91.7± 13.2 87.2± 17.8 98.3± 3.5 83.0± 21.9 93.9
Kappa Statistic 90.9± 15.5 79.6± 30.2 96.8± 6.8 91.7± 5.5 97.0

Human Expert

Accuracy – – – – 96.3
Macro-F1 – – – – 89.0
Kappa Statistic – – – – 92.8

Table 2: Mean and standard deviation of model performance on different subsets. †Significantly lower than the
corresponding metric of DECBAE. Significance is defined by p < 0.05 in paired t-test. All numbers are in
percentages. High deviations are expected due to the variety of abbreviations in each subset.
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agreement (Cohen, 1960). It can also be used to
evaluate predictions of multi-label classification:

κ =
po − pe
1− pe

where po is the observed agreement and in the case
of classification po = accuracy, pe is the expected
agreement which can be achieved by pure chance:

pe =
∑
c

pcp̂c

pc and p̂c refer to the proportion of class c in
ground truth labels and predictions, respectively.
Empirical results in Table 2 show that Kappa
statistics are often lower than accuracy and macro-
F1, and thus serving as a more distinctive metric
for our task.

4.4 Results

In Table 2, we report means and standard devi-
ations of each model’s performance on different
subsets evaluated by the three metrics. In all sub-
sets, DECBAE performs significantly better than
most other models by large margins. A general
trend of DECBAE > BioELMo > biLSTM >
BoW-FFN > Majority conserves across subsets.

In the Random subset which represents the
whole dataset, all metrics of DECBAE exceed
0.90, setting very promising state-of-the-art per-
formance despite the potential noise of the dataset.

In the Imbalanced subset where the most fre-
quent definitions consist of over 95% of all the la-
bels, a trivial Majority solution gets over 95% ac-
curacy. However, for macro-F1 and kappa statis-
tic, performance of the baselines drop dramatically
while DECBAE can still generate decent results.

DECBAE and BioELMo alone remain robust in
Low-resources setting. This is due to the trans-
fer learning nature of BioELMo, which utilizes the
knowledge encoded in the PubMed abstracts.

Our abbreviation expansion dataset covers
roughly 85% of clinical abbreviations mentioned
in Xu et al. (2012). On this Clinical subset,
DECBAE gets pretty good results and vastly out-
perform other baselines despite its variety in pos-
sible definitions (8.5 possible definitions per ab-
breviation, as shown in Table 1).

On the testset for human performance (i.e.:
abbreviation expansion for DAT), DECBAE and
even some neural baselines outperform single hu-
man expert.

5 Analysis

In Fig. 3, we use confusion matrices to visual-
ize the differences between DECBAE or the hu-
man expert and the ground truth labels, for disam-
biguation of abbreviation “DAT”. The high agree-
ment level between human expert predictions and
the automatically assigned labels indicates that
our pipeline of collecting the abbreviation disam-
biguation dataset is valid.

In general, both DECBAE and the human expert
perform well in the task, with only few misclassi-
fications. Specifically, DECBAE, and even other
neural baselines like biLSTM and BioELMo, out-
perform the human expert in all metrics. Com-
pared to DECBAE, the human expert is more
likely to misclassify direct agglutination test with
direct antiglobulin test (9 v.s. 1), and misclassify
dementia of the Alzheimer type with dopamine
transporter (7 v.s. 0). We show several instances
of human and DECBAE’s errors in Table 3.

One limitation of this work is that we just test
DECBAE on our automatically collected dataset.
Since the proposed model can also be used on
other biomedical abbreviation expansion datasets
as well, evaluating on other datasets like MSH
WSD is a clear future work to do.

Another potential direction for improvement
is to accelerate the inference speed. Currently
DECBAE uses BioELMo for embedding and
abbreviation-specific biLSTM for classification,
resulting in two recurrent models in total. Our re-
sults show that just BioELMo with several FFN
layers also generates decent results, so in some
cases we might use only BioELMo as a compro-
mise for faster inference.

6 Conclusion

We present DECBAE, a state-of-the-art biomedi-
cal abbreviation expansion model on the automat-
ically collected dataset from PubMed. The results
show that, with only minimum expert involve-
ment, we can still perform well in such a domain-
specific task by automatically collecting training
data from a large corpus and utilize embeddings
from pre-trained biomedical language models.

7 Acknowledgement

We are grateful for the annonymous reviewers of
BioNLP 2019 who gave us very insightful com-
ments and suggestions. J.L. is supported by NLM
training grant 5T15LM007059-32.



95

Test sentence Label Human DECBAE

The reduction of the number of different segments in DAT compared to controls and
patients suffering from depression may be helpful for differential diagnosis. Def. 4 Def. 1 Def. 4

Reliance on objective brain phenotype measures, for example, those afforded by brain
imaging, might critically improve detection of DAT genotype-phenotype association. Def. 1 Def. 1 Def. 4

DAT was more commonly positive among BO incompatible (21.5% in BO vs. 14.8%
in AO , P=0.001) and black (18.8% in blacks vs. 10.8% in nonblacks , P=0.003) infants. Def. 2 Def. 3 Def. 2

NPY-LI showed a significant reduction in DAT but not in FTD. Def. 4 Def. 1 Def. 4

The study included 122 healthy subjects, aged 18-83 years, recruited in the multicentre
‘ENC-DAT’ study (promoted by the European Association of Nuclear Medicine). Def. 1 Def. 4 Def. 1

Table 3: Some samples of errors made by the human expert and DECBAE. Def. 1: dopamine transporter; Def. 2:
direct antiglobulin test; Def. 3: direct agglutination test; Def. 4: dementia of the Alzheimer type.
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