@inproceedings{bordea-etal-2019-query,
title = "Query selection methods for automated corpora construction with a use case in food-drug interactions",
author = "Bordea, Georgeta and
Randriatsitohaina, Tsanta and
Mougin, Fleur and
Grabar, Natalia and
Hamon, Thierry",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5013/",
doi = "10.18653/v1/W19-5013",
pages = "115--124",
abstract = "In this paper, we address the problem of automatically constructing a relevant corpus of scientific articles about food-drug interactions. There is a growing number of scientific publications that describe food-drug interactions but currently building a high-coverage corpus that can be used for information extraction purposes is not trivial. We investigate several methods for automating the query selection process using an expert-curated corpus of food-drug interactions. Our experiments show that index term features along with a decision tree classifier are the best approach for this task and that feature selection approaches and in particular gain ratio outperform frequency-based methods for query selection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bordea-etal-2019-query">
<titleInfo>
<title>Query selection methods for automated corpora construction with a use case in food-drug interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgeta</namePart>
<namePart type="family">Bordea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsanta</namePart>
<namePart type="family">Randriatsitohaina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fleur</namePart>
<namePart type="family">Mougin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Grabar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Hamon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we address the problem of automatically constructing a relevant corpus of scientific articles about food-drug interactions. There is a growing number of scientific publications that describe food-drug interactions but currently building a high-coverage corpus that can be used for information extraction purposes is not trivial. We investigate several methods for automating the query selection process using an expert-curated corpus of food-drug interactions. Our experiments show that index term features along with a decision tree classifier are the best approach for this task and that feature selection approaches and in particular gain ratio outperform frequency-based methods for query selection.</abstract>
<identifier type="citekey">bordea-etal-2019-query</identifier>
<identifier type="doi">10.18653/v1/W19-5013</identifier>
<location>
<url>https://aclanthology.org/W19-5013/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>115</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Query selection methods for automated corpora construction with a use case in food-drug interactions
%A Bordea, Georgeta
%A Randriatsitohaina, Tsanta
%A Mougin, Fleur
%A Grabar, Natalia
%A Hamon, Thierry
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F bordea-etal-2019-query
%X In this paper, we address the problem of automatically constructing a relevant corpus of scientific articles about food-drug interactions. There is a growing number of scientific publications that describe food-drug interactions but currently building a high-coverage corpus that can be used for information extraction purposes is not trivial. We investigate several methods for automating the query selection process using an expert-curated corpus of food-drug interactions. Our experiments show that index term features along with a decision tree classifier are the best approach for this task and that feature selection approaches and in particular gain ratio outperform frequency-based methods for query selection.
%R 10.18653/v1/W19-5013
%U https://aclanthology.org/W19-5013/
%U https://doi.org/10.18653/v1/W19-5013
%P 115-124
Markdown (Informal)
[Query selection methods for automated corpora construction with a use case in food-drug interactions](https://aclanthology.org/W19-5013/) (Bordea et al., BioNLP 2019)
ACL