@inproceedings{gron-etal-2019-leveraging,
title = "Leveraging Sublanguage Features for the Semantic Categorization of Clinical Terms",
author = {Gr{\"o}n, Leonie and
Bertels, Ann and
Heylen, Kris},
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5022/",
doi = "10.18653/v1/W19-5022",
pages = "211--216",
abstract = "The automatic processing of clinical documents, such as Electronic Health Records (EHRs), could benefit substantially from the enrichment of medical terminologies with terms encountered in clinical practice. To integrate such terms into existing knowledge sources, they must be linked to corresponding concepts. We present a method for the semantic categorization of clinical terms based on their surface form. We find that features based on sublanguage properties can provide valuable cues for the classification of term variants."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gron-etal-2019-leveraging">
<titleInfo>
<title>Leveraging Sublanguage Features for the Semantic Categorization of Clinical Terms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leonie</namePart>
<namePart type="family">Grön</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ann</namePart>
<namePart type="family">Bertels</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kris</namePart>
<namePart type="family">Heylen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The automatic processing of clinical documents, such as Electronic Health Records (EHRs), could benefit substantially from the enrichment of medical terminologies with terms encountered in clinical practice. To integrate such terms into existing knowledge sources, they must be linked to corresponding concepts. We present a method for the semantic categorization of clinical terms based on their surface form. We find that features based on sublanguage properties can provide valuable cues for the classification of term variants.</abstract>
<identifier type="citekey">gron-etal-2019-leveraging</identifier>
<identifier type="doi">10.18653/v1/W19-5022</identifier>
<location>
<url>https://aclanthology.org/W19-5022/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>211</start>
<end>216</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Sublanguage Features for the Semantic Categorization of Clinical Terms
%A Grön, Leonie
%A Bertels, Ann
%A Heylen, Kris
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F gron-etal-2019-leveraging
%X The automatic processing of clinical documents, such as Electronic Health Records (EHRs), could benefit substantially from the enrichment of medical terminologies with terms encountered in clinical practice. To integrate such terms into existing knowledge sources, they must be linked to corresponding concepts. We present a method for the semantic categorization of clinical terms based on their surface form. We find that features based on sublanguage properties can provide valuable cues for the classification of term variants.
%R 10.18653/v1/W19-5022
%U https://aclanthology.org/W19-5022/
%U https://doi.org/10.18653/v1/W19-5022
%P 211-216
Markdown (Informal)
[Leveraging Sublanguage Features for the Semantic Categorization of Clinical Terms](https://aclanthology.org/W19-5022/) (Grön et al., BioNLP 2019)
ACL