@inproceedings{yan-etal-2019-character,
title = "Can Character Embeddings Improve Cause-of-Death Classification for Verbal Autopsy Narratives?",
author = "Yan, Zhaodong and
Jeblee, Serena and
Hirst, Graeme",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5025",
doi = "10.18653/v1/W19-5025",
pages = "234--239",
abstract = "We present two models for combining word and character embeddings for cause-of-death classification of verbal autopsy reports using the text of the narratives. We find that for smaller datasets (500 to 1000 records), adding character information to the model improves classification, making character-based CNNs a promising method for automated verbal autopsy coding.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yan-etal-2019-character">
<titleInfo>
<title>Can Character Embeddings Improve Cause-of-Death Classification for Verbal Autopsy Narratives?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhaodong</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serena</namePart>
<namePart type="family">Jeblee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graeme</namePart>
<namePart type="family">Hirst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present two models for combining word and character embeddings for cause-of-death classification of verbal autopsy reports using the text of the narratives. We find that for smaller datasets (500 to 1000 records), adding character information to the model improves classification, making character-based CNNs a promising method for automated verbal autopsy coding.</abstract>
<identifier type="citekey">yan-etal-2019-character</identifier>
<identifier type="doi">10.18653/v1/W19-5025</identifier>
<location>
<url>https://aclanthology.org/W19-5025</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>234</start>
<end>239</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Character Embeddings Improve Cause-of-Death Classification for Verbal Autopsy Narratives?
%A Yan, Zhaodong
%A Jeblee, Serena
%A Hirst, Graeme
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F yan-etal-2019-character
%X We present two models for combining word and character embeddings for cause-of-death classification of verbal autopsy reports using the text of the narratives. We find that for smaller datasets (500 to 1000 records), adding character information to the model improves classification, making character-based CNNs a promising method for automated verbal autopsy coding.
%R 10.18653/v1/W19-5025
%U https://aclanthology.org/W19-5025
%U https://doi.org/10.18653/v1/W19-5025
%P 234-239
Markdown (Informal)
[Can Character Embeddings Improve Cause-of-Death Classification for Verbal Autopsy Narratives?](https://aclanthology.org/W19-5025) (Yan et al., BioNLP 2019)
ACL