@inproceedings{kanakarajan-etal-2019-saama,
title = "Saama Research at {MEDIQA} 2019: Pre-trained {B}io{BERT} with Attention Visualisation for Medical Natural Language Inference",
author = "Kanakarajan, Kamal raj and
Ramamoorthy, Suriyadeepan and
Archana, Vaidheeswaran and
Chatterjee, Soham and
Sankarasubbu, Malaikannan",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5055/",
doi = "10.18653/v1/W19-5055",
pages = "510--516",
abstract = "Natural Language inference is the task of identifying relation between two sentences as entailment, contradiction or neutrality. MedNLI is a biomedical flavour of NLI for clinical domain. This paper explores the use of Bidirectional Encoder Representation from Transformer (BERT) for solving MedNLI. The proposed model, BERT pre-trained on PMC, PubMed and fine-tuned on MIMICIII v1.4, achieves state of the art results on MedNLI (83.45{\%}) and an accuracy of 78.5{\%} in MEDIQA challenge. The authors present an analysis of the attention patterns that emerged as a result of training BERT on MedNLI using a visualization tool, bertviz."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kanakarajan-etal-2019-saama">
<titleInfo>
<title>Saama Research at MEDIQA 2019: Pre-trained BioBERT with Attention Visualisation for Medical Natural Language Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kamal</namePart>
<namePart type="given">raj</namePart>
<namePart type="family">Kanakarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suriyadeepan</namePart>
<namePart type="family">Ramamoorthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vaidheeswaran</namePart>
<namePart type="family">Archana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soham</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malaikannan</namePart>
<namePart type="family">Sankarasubbu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th BioNLP Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural Language inference is the task of identifying relation between two sentences as entailment, contradiction or neutrality. MedNLI is a biomedical flavour of NLI for clinical domain. This paper explores the use of Bidirectional Encoder Representation from Transformer (BERT) for solving MedNLI. The proposed model, BERT pre-trained on PMC, PubMed and fine-tuned on MIMICIII v1.4, achieves state of the art results on MedNLI (83.45%) and an accuracy of 78.5% in MEDIQA challenge. The authors present an analysis of the attention patterns that emerged as a result of training BERT on MedNLI using a visualization tool, bertviz.</abstract>
<identifier type="citekey">kanakarajan-etal-2019-saama</identifier>
<identifier type="doi">10.18653/v1/W19-5055</identifier>
<location>
<url>https://aclanthology.org/W19-5055/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>510</start>
<end>516</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Saama Research at MEDIQA 2019: Pre-trained BioBERT with Attention Visualisation for Medical Natural Language Inference
%A Kanakarajan, Kamal raj
%A Ramamoorthy, Suriyadeepan
%A Archana, Vaidheeswaran
%A Chatterjee, Soham
%A Sankarasubbu, Malaikannan
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 18th BioNLP Workshop and Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F kanakarajan-etal-2019-saama
%X Natural Language inference is the task of identifying relation between two sentences as entailment, contradiction or neutrality. MedNLI is a biomedical flavour of NLI for clinical domain. This paper explores the use of Bidirectional Encoder Representation from Transformer (BERT) for solving MedNLI. The proposed model, BERT pre-trained on PMC, PubMed and fine-tuned on MIMICIII v1.4, achieves state of the art results on MedNLI (83.45%) and an accuracy of 78.5% in MEDIQA challenge. The authors present an analysis of the attention patterns that emerged as a result of training BERT on MedNLI using a visualization tool, bertviz.
%R 10.18653/v1/W19-5055
%U https://aclanthology.org/W19-5055/
%U https://doi.org/10.18653/v1/W19-5055
%P 510-516
Markdown (Informal)
[Saama Research at MEDIQA 2019: Pre-trained BioBERT with Attention Visualisation for Medical Natural Language Inference](https://aclanthology.org/W19-5055/) (Kanakarajan et al., BioNLP 2019)
ACL