The University of Edinburgh’s Submissions to the WMT19 News Translation Task
Rachel Bawden, Nikolay Bogoychev, Ulrich Germann, Roman Grundkiewicz, Faheem Kirefu, Antonio Valerio Miceli Barone, Alexandra Birch
Correct Metadata for
Abstract
The University of Edinburgh participated in the WMT19 Shared Task on News Translation in six language directions: English↔Gujarati, English↔Chinese, German→English, and English→Czech. For all translation directions, we created or used back-translations of monolingual data in the target language as additional synthetic training data. For English↔Gujarati, we also explored semi-supervised MT with cross-lingual language model pre-training, and translation pivoting through Hindi. For translation to and from Chinese, we investigated character-based tokenisation vs. sub-word segmentation of Chinese text. For German→English, we studied the impact of vast amounts of back-translated training data on translation quality, gaining a few additional insights over Edunov et al. (2018). For English→Czech, we compared different preprocessing and tokenisation regimes.- Anthology ID:
- W19-5304
- Volume:
- Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
- Month:
- August
- Year:
- 2019
- Address:
- Florence, Italy
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 103–115
- Language:
- URL:
- https://aclanthology.org/W19-5304/
- DOI:
- 10.18653/v1/W19-5304
- Bibkey:
- Cite (ACL):
- Rachel Bawden, Nikolay Bogoychev, Ulrich Germann, Roman Grundkiewicz, Faheem Kirefu, Antonio Valerio Miceli Barone, and Alexandra Birch. 2019. The University of Edinburgh’s Submissions to the WMT19 News Translation Task. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 103–115, Florence, Italy. Association for Computational Linguistics.
- Cite (Informal):
- The University of Edinburgh’s Submissions to the WMT19 News Translation Task (Bawden et al., WMT 2019)
- Copy Citation:
- PDF:
- https://aclanthology.org/W19-5304.pdf
Export citation
@inproceedings{bawden-etal-2019-university, title = "The {U}niversity of {E}dinburgh`s Submissions to the {WMT}19 News Translation Task", author = "Bawden, Rachel and Bogoychev, Nikolay and Germann, Ulrich and Grundkiewicz, Roman and Kirefu, Faheem and Miceli Barone, Antonio Valerio and Birch, Alexandra", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)", month = aug, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W19-5304/", doi = "10.18653/v1/W19-5304", pages = "103--115", abstract = "The University of Edinburgh participated in the WMT19 Shared Task on News Translation in six language directions: English{\ensuremath{\leftrightarrow}}Gujarati, English{\ensuremath{\leftrightarrow}}Chinese, German{\textrightarrow}English, and English{\textrightarrow}Czech. For all translation directions, we created or used back-translations of monolingual data in the target language as additional synthetic training data. For English{\ensuremath{\leftrightarrow}}Gujarati, we also explored semi-supervised MT with cross-lingual language model pre-training, and translation pivoting through Hindi. For translation to and from Chinese, we investigated character-based tokenisation vs. sub-word segmentation of Chinese text. For German{\textrightarrow}English, we studied the impact of vast amounts of back-translated training data on translation quality, gaining a few additional insights over Edunov et al. (2018). For English{\textrightarrow}Czech, we compared different preprocessing and tokenisation regimes." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="bawden-etal-2019-university"> <titleInfo> <title>The University of Edinburgh‘s Submissions to the WMT19 News Translation Task</title> </titleInfo> <name type="personal"> <namePart type="given">Rachel</namePart> <namePart type="family">Bawden</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nikolay</namePart> <namePart type="family">Bogoychev</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ulrich</namePart> <namePart type="family">Germann</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Faheem</namePart> <namePart type="family">Kirefu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Valerio</namePart> <namePart type="family">Miceli Barone</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexandra</namePart> <namePart type="family">Birch</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2019-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Florence, Italy</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>The University of Edinburgh participated in the WMT19 Shared Task on News Translation in six language directions: English\ensuremathłeftrightarrowGujarati, English\ensuremathłeftrightarrowChinese, German→English, and English→Czech. For all translation directions, we created or used back-translations of monolingual data in the target language as additional synthetic training data. For English\ensuremathłeftrightarrowGujarati, we also explored semi-supervised MT with cross-lingual language model pre-training, and translation pivoting through Hindi. For translation to and from Chinese, we investigated character-based tokenisation vs. sub-word segmentation of Chinese text. For German→English, we studied the impact of vast amounts of back-translated training data on translation quality, gaining a few additional insights over Edunov et al. (2018). For English→Czech, we compared different preprocessing and tokenisation regimes.</abstract> <identifier type="citekey">bawden-etal-2019-university</identifier> <identifier type="doi">10.18653/v1/W19-5304</identifier> <location> <url>https://aclanthology.org/W19-5304/</url> </location> <part> <date>2019-08</date> <extent unit="page"> <start>103</start> <end>115</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T The University of Edinburgh‘s Submissions to the WMT19 News Translation Task %A Bawden, Rachel %A Bogoychev, Nikolay %A Germann, Ulrich %A Grundkiewicz, Roman %A Kirefu, Faheem %A Miceli Barone, Antonio Valerio %A Birch, Alexandra %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1) %D 2019 %8 August %I Association for Computational Linguistics %C Florence, Italy %F bawden-etal-2019-university %X The University of Edinburgh participated in the WMT19 Shared Task on News Translation in six language directions: English\ensuremathłeftrightarrowGujarati, English\ensuremathłeftrightarrowChinese, German→English, and English→Czech. For all translation directions, we created or used back-translations of monolingual data in the target language as additional synthetic training data. For English\ensuremathłeftrightarrowGujarati, we also explored semi-supervised MT with cross-lingual language model pre-training, and translation pivoting through Hindi. For translation to and from Chinese, we investigated character-based tokenisation vs. sub-word segmentation of Chinese text. For German→English, we studied the impact of vast amounts of back-translated training data on translation quality, gaining a few additional insights over Edunov et al. (2018). For English→Czech, we compared different preprocessing and tokenisation regimes. %R 10.18653/v1/W19-5304 %U https://aclanthology.org/W19-5304/ %U https://doi.org/10.18653/v1/W19-5304 %P 103-115
Markdown (Informal)
[The University of Edinburgh’s Submissions to the WMT19 News Translation Task](https://aclanthology.org/W19-5304/) (Bawden et al., WMT 2019)
- The University of Edinburgh’s Submissions to the WMT19 News Translation Task (Bawden et al., WMT 2019)
ACL
- Rachel Bawden, Nikolay Bogoychev, Ulrich Germann, Roman Grundkiewicz, Faheem Kirefu, Antonio Valerio Miceli Barone, and Alexandra Birch. 2019. The University of Edinburgh’s Submissions to the WMT19 News Translation Task. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 103–115, Florence, Italy. Association for Computational Linguistics.