@inproceedings{li-specia-2019-comparison,
    title = "A Comparison on Fine-grained Pre-trained Embeddings for the {WMT}19{C}hinese-{E}nglish News Translation Task",
    author = "Li, Zhenhao  and
      Specia, Lucia",
    editor = "Bojar, Ond{\v{r}}ej  and
      Chatterjee, Rajen  and
      Federmann, Christian  and
      Fishel, Mark  and
      Graham, Yvette  and
      Haddow, Barry  and
      Huck, Matthias  and
      Yepes, Antonio Jimeno  and
      Koehn, Philipp  and
      Martins, Andr{\'e}  and
      Monz, Christof  and
      Negri, Matteo  and
      N{\'e}v{\'e}ol, Aur{\'e}lie  and
      Neves, Mariana  and
      Post, Matt  and
      Turchi, Marco  and
      Verspoor, Karin",
    booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-5324/",
    doi = "10.18653/v1/W19-5324",
    pages = "249--256",
    abstract = "This paper describes our submission to the WMT 2019 Chinese-English (zh-en) news translation shared task. Our systems are based on RNN architectures with pre-trained embeddings which utilize character and sub-character information. We compare models with these different granularity levels using different evaluating metics. We find that a finer granularity embeddings can help the model according to character level evaluation and that the pre-trained embeddings can also be beneficial for model performance marginally when the training data is limited."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-specia-2019-comparison">
    <titleInfo>
        <title>A Comparison on Fine-grained Pre-trained Embeddings for the WMT19Chinese-English News Translation Task</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zhenhao</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lucia</namePart>
        <namePart type="family">Specia</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ondřej</namePart>
            <namePart type="family">Bojar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rajen</namePart>
            <namePart type="family">Chatterjee</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christian</namePart>
            <namePart type="family">Federmann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mark</namePart>
            <namePart type="family">Fishel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yvette</namePart>
            <namePart type="family">Graham</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Barry</namePart>
            <namePart type="family">Haddow</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matthias</namePart>
            <namePart type="family">Huck</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antonio</namePart>
            <namePart type="given">Jimeno</namePart>
            <namePart type="family">Yepes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Philipp</namePart>
            <namePart type="family">Koehn</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">André</namePart>
            <namePart type="family">Martins</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christof</namePart>
            <namePart type="family">Monz</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matteo</namePart>
            <namePart type="family">Negri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurélie</namePart>
            <namePart type="family">Névéol</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mariana</namePart>
            <namePart type="family">Neves</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matt</namePart>
            <namePart type="family">Post</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marco</namePart>
            <namePart type="family">Turchi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Karin</namePart>
            <namePart type="family">Verspoor</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes our submission to the WMT 2019 Chinese-English (zh-en) news translation shared task. Our systems are based on RNN architectures with pre-trained embeddings which utilize character and sub-character information. We compare models with these different granularity levels using different evaluating metics. We find that a finer granularity embeddings can help the model according to character level evaluation and that the pre-trained embeddings can also be beneficial for model performance marginally when the training data is limited.</abstract>
    <identifier type="citekey">li-specia-2019-comparison</identifier>
    <identifier type="doi">10.18653/v1/W19-5324</identifier>
    <location>
        <url>https://aclanthology.org/W19-5324/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>249</start>
            <end>256</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Comparison on Fine-grained Pre-trained Embeddings for the WMT19Chinese-English News Translation Task
%A Li, Zhenhao
%A Specia, Lucia
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Martins, André
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F li-specia-2019-comparison
%X This paper describes our submission to the WMT 2019 Chinese-English (zh-en) news translation shared task. Our systems are based on RNN architectures with pre-trained embeddings which utilize character and sub-character information. We compare models with these different granularity levels using different evaluating metics. We find that a finer granularity embeddings can help the model according to character level evaluation and that the pre-trained embeddings can also be beneficial for model performance marginally when the training data is limited.
%R 10.18653/v1/W19-5324
%U https://aclanthology.org/W19-5324/
%U https://doi.org/10.18653/v1/W19-5324
%P 249-256
Markdown (Informal)
[A Comparison on Fine-grained Pre-trained Embeddings for the WMT19Chinese-English News Translation Task](https://aclanthology.org/W19-5324/) (Li & Specia, WMT 2019)
ACL