@inproceedings{sen-etal-2019-iitp,
title = "{IITP}-{MT} System for {G}ujarati-{E}nglish News Translation Task at {WMT} 2019",
author = "Sen, Sukanta and
Gupta, Kamal Kumar and
Ekbal, Asif and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5346",
doi = "10.18653/v1/W19-5346",
pages = "407--411",
abstract = "We describe our submission to WMT 2019 News translation shared task for Gujarati-English language pair. We submit constrained systems, i.e, we rely on the data provided for this language pair and do not use any external data. We train Transformer based subword-level neural machine translation (NMT) system using original parallel corpus along with synthetic parallel corpus obtained through back-translation of monolingual data. Our primary systems achieve BLEU scores of 10.4 and 8.1 for Gujarati→English and English→Gujarati, respectively. We observe that incorporating monolingual data through back-translation improves the BLEU score significantly over baseline NMT and SMT systems for this language pair.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sen-etal-2019-iitp">
<titleInfo>
<title>IITP-MT System for Gujarati-English News Translation Task at WMT 2019</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sukanta</namePart>
<namePart type="family">Sen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kamal</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our submission to WMT 2019 News translation shared task for Gujarati-English language pair. We submit constrained systems, i.e, we rely on the data provided for this language pair and do not use any external data. We train Transformer based subword-level neural machine translation (NMT) system using original parallel corpus along with synthetic parallel corpus obtained through back-translation of monolingual data. Our primary systems achieve BLEU scores of 10.4 and 8.1 for Gujarati→English and English→Gujarati, respectively. We observe that incorporating monolingual data through back-translation improves the BLEU score significantly over baseline NMT and SMT systems for this language pair.</abstract>
<identifier type="citekey">sen-etal-2019-iitp</identifier>
<identifier type="doi">10.18653/v1/W19-5346</identifier>
<location>
<url>https://aclanthology.org/W19-5346</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>407</start>
<end>411</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IITP-MT System for Gujarati-English News Translation Task at WMT 2019
%A Sen, Sukanta
%A Gupta, Kamal Kumar
%A Ekbal, Asif
%A Bhattacharyya, Pushpak
%S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F sen-etal-2019-iitp
%X We describe our submission to WMT 2019 News translation shared task for Gujarati-English language pair. We submit constrained systems, i.e, we rely on the data provided for this language pair and do not use any external data. We train Transformer based subword-level neural machine translation (NMT) system using original parallel corpus along with synthetic parallel corpus obtained through back-translation of monolingual data. Our primary systems achieve BLEU scores of 10.4 and 8.1 for Gujarati→English and English→Gujarati, respectively. We observe that incorporating monolingual data through back-translation improves the BLEU score significantly over baseline NMT and SMT systems for this language pair.
%R 10.18653/v1/W19-5346
%U https://aclanthology.org/W19-5346
%U https://doi.org/10.18653/v1/W19-5346
%P 407-411
Markdown (Informal)
[IITP-MT System for Gujarati-English News Translation Task at WMT 2019](https://aclanthology.org/W19-5346) (Sen et al., WMT 2019)
ACL