@inproceedings{yu-2019-en,
title = "The En-{R}u Two-way Integrated Machine Translation System Based on Transformer",
author = "Yu, Doron",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5349",
doi = "10.18653/v1/W19-5349",
pages = "434--439",
abstract = "Machine translation is one of the most popular areas in natural language processing. WMT is a conference to assess the level of machine translation capabilities of organizations around the world, which is the evaluation activity we participated in. In this review we participated in a two-way translation track from Russian to English and English to Russian. We used official training data, 38 million parallel corpora, and 10 million monolingual corpora. The overall framework we use is the Transformer neural machine translation model, supplemented by data filtering, post-processing, reordering and other related processing methods. The BLEU value of our final translation result from Russian to English is 38.7, ranking 5th, while from English to Russian is 27.8, ranking 10th.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-2019-en">
<titleInfo>
<title>The En-Ru Two-way Integrated Machine Translation System Based on Transformer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Doron</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="given">Jimeno</namePart>
<namePart type="family">Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine translation is one of the most popular areas in natural language processing. WMT is a conference to assess the level of machine translation capabilities of organizations around the world, which is the evaluation activity we participated in. In this review we participated in a two-way translation track from Russian to English and English to Russian. We used official training data, 38 million parallel corpora, and 10 million monolingual corpora. The overall framework we use is the Transformer neural machine translation model, supplemented by data filtering, post-processing, reordering and other related processing methods. The BLEU value of our final translation result from Russian to English is 38.7, ranking 5th, while from English to Russian is 27.8, ranking 10th.</abstract>
<identifier type="citekey">yu-2019-en</identifier>
<identifier type="doi">10.18653/v1/W19-5349</identifier>
<location>
<url>https://aclanthology.org/W19-5349</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>434</start>
<end>439</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The En-Ru Two-way Integrated Machine Translation System Based on Transformer
%A Yu, Doron
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Martins, André
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F yu-2019-en
%X Machine translation is one of the most popular areas in natural language processing. WMT is a conference to assess the level of machine translation capabilities of organizations around the world, which is the evaluation activity we participated in. In this review we participated in a two-way translation track from Russian to English and English to Russian. We used official training data, 38 million parallel corpora, and 10 million monolingual corpora. The overall framework we use is the Transformer neural machine translation model, supplemented by data filtering, post-processing, reordering and other related processing methods. The BLEU value of our final translation result from Russian to English is 38.7, ranking 5th, while from English to Russian is 27.8, ranking 10th.
%R 10.18653/v1/W19-5349
%U https://aclanthology.org/W19-5349
%U https://doi.org/10.18653/v1/W19-5349
%P 434-439
Markdown (Informal)
[The En-Ru Two-way Integrated Machine Translation System Based on Transformer](https://aclanthology.org/W19-5349) (Yu, WMT 2019)
ACL