Abstract
We propose WMDO, a metric based on distance between distributions in the semantic vector space. Matching in the semantic space has been investigated for translation evaluation, but the constraints of a translation’s word order have not been fully explored. Building on the Word Mover’s Distance metric and various word embeddings, we introduce a fragmentation penalty to account for fluency of a translation. This word order extension is shown to perform better than standard WMD, with promising results against other types of metrics.- Anthology ID:
- W19-5356
- Volume:
- Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
- Month:
- August
- Year:
- 2019
- Address:
- Florence, Italy
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 494–500
- Language:
- URL:
- https://aclanthology.org/W19-5356
- DOI:
- 10.18653/v1/W19-5356
- Bibkey:
- Cite (ACL):
- Julian Chow, Lucia Specia, and Pranava Madhyastha. 2019. WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 494–500, Florence, Italy. Association for Computational Linguistics.
- Cite (Informal):
- WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation (Chow et al., WMT 2019)
- Copy Citation:
- PDF:
- https://aclanthology.org/W19-5356.pdf
Export citation
@inproceedings{chow-etal-2019-wmdo, title = "{WMDO}: Fluency-based Word Mover{'}s Distance for Machine Translation Evaluation", author = "Chow, Julian and Specia, Lucia and Madhyastha, Pranava", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)", month = aug, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W19-5356", doi = "10.18653/v1/W19-5356", pages = "494--500", abstract = "We propose WMDO, a metric based on distance between distributions in the semantic vector space. Matching in the semantic space has been investigated for translation evaluation, but the constraints of a translation{'}s word order have not been fully explored. Building on the Word Mover{'}s Distance metric and various word embeddings, we introduce a fragmentation penalty to account for fluency of a translation. This word order extension is shown to perform better than standard WMD, with promising results against other types of metrics.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="chow-etal-2019-wmdo"> <titleInfo> <title>WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation</title> </titleInfo> <name type="personal"> <namePart type="given">Julian</namePart> <namePart type="family">Chow</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Specia</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pranava</namePart> <namePart type="family">Madhyastha</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2019-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Florence, Italy</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>We propose WMDO, a metric based on distance between distributions in the semantic vector space. Matching in the semantic space has been investigated for translation evaluation, but the constraints of a translation’s word order have not been fully explored. Building on the Word Mover’s Distance metric and various word embeddings, we introduce a fragmentation penalty to account for fluency of a translation. This word order extension is shown to perform better than standard WMD, with promising results against other types of metrics.</abstract> <identifier type="citekey">chow-etal-2019-wmdo</identifier> <identifier type="doi">10.18653/v1/W19-5356</identifier> <location> <url>https://aclanthology.org/W19-5356</url> </location> <part> <date>2019-08</date> <extent unit="page"> <start>494</start> <end>500</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation %A Chow, Julian %A Specia, Lucia %A Madhyastha, Pranava %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1) %D 2019 %8 August %I Association for Computational Linguistics %C Florence, Italy %F chow-etal-2019-wmdo %X We propose WMDO, a metric based on distance between distributions in the semantic vector space. Matching in the semantic space has been investigated for translation evaluation, but the constraints of a translation’s word order have not been fully explored. Building on the Word Mover’s Distance metric and various word embeddings, we introduce a fragmentation penalty to account for fluency of a translation. This word order extension is shown to perform better than standard WMD, with promising results against other types of metrics. %R 10.18653/v1/W19-5356 %U https://aclanthology.org/W19-5356 %U https://doi.org/10.18653/v1/W19-5356 %P 494-500
Markdown (Informal)
[WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation](https://aclanthology.org/W19-5356) (Chow et al., WMT 2019)
- WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation (Chow et al., WMT 2019)
ACL
- Julian Chow, Lucia Specia, and Pranava Madhyastha. 2019. WMDO: Fluency-based Word Mover’s Distance for Machine Translation Evaluation. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 494–500, Florence, Italy. Association for Computational Linguistics.