@inproceedings{yoshimura-etal-2019-filtering,
title = "Filtering Pseudo-References by Paraphrasing for Automatic Evaluation of Machine Translation",
author = "Yoshimura, Ryoma and
Shimanaka, Hiroki and
Matsumura, Yukio and
Yamagishi, Hayahide and
Komachi, Mamoru",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5360",
doi = "10.18653/v1/W19-5360",
pages = "521--525",
abstract = "In this paper, we introduce our participation in the WMT 2019 Metric Shared Task. We propose an improved version of sentence BLEU using filtered pseudo-references. We propose a method to filter pseudo-references by paraphrasing for automatic evaluation of machine translation (MT). We use the outputs of off-the-shelf MT systems as pseudo-references filtered by paraphrasing in addition to a single human reference (gold reference). We use BERT fine-tuned with paraphrase corpus to filter pseudo-references by checking the paraphrasability with the gold reference. Our experimental results of the WMT 2016 and 2017 datasets show that our method achieved higher correlation with human evaluation than the sentence BLEU (SentBLEU) baselines with a single reference and with unfiltered pseudo-references.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yoshimura-etal-2019-filtering">
<titleInfo>
<title>Filtering Pseudo-References by Paraphrasing for Automatic Evaluation of Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryoma</namePart>
<namePart type="family">Yoshimura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Shimanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yukio</namePart>
<namePart type="family">Matsumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hayahide</namePart>
<namePart type="family">Yamagishi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce our participation in the WMT 2019 Metric Shared Task. We propose an improved version of sentence BLEU using filtered pseudo-references. We propose a method to filter pseudo-references by paraphrasing for automatic evaluation of machine translation (MT). We use the outputs of off-the-shelf MT systems as pseudo-references filtered by paraphrasing in addition to a single human reference (gold reference). We use BERT fine-tuned with paraphrase corpus to filter pseudo-references by checking the paraphrasability with the gold reference. Our experimental results of the WMT 2016 and 2017 datasets show that our method achieved higher correlation with human evaluation than the sentence BLEU (SentBLEU) baselines with a single reference and with unfiltered pseudo-references.</abstract>
<identifier type="citekey">yoshimura-etal-2019-filtering</identifier>
<identifier type="doi">10.18653/v1/W19-5360</identifier>
<location>
<url>https://aclanthology.org/W19-5360</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>521</start>
<end>525</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Filtering Pseudo-References by Paraphrasing for Automatic Evaluation of Machine Translation
%A Yoshimura, Ryoma
%A Shimanaka, Hiroki
%A Matsumura, Yukio
%A Yamagishi, Hayahide
%A Komachi, Mamoru
%S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F yoshimura-etal-2019-filtering
%X In this paper, we introduce our participation in the WMT 2019 Metric Shared Task. We propose an improved version of sentence BLEU using filtered pseudo-references. We propose a method to filter pseudo-references by paraphrasing for automatic evaluation of machine translation (MT). We use the outputs of off-the-shelf MT systems as pseudo-references filtered by paraphrasing in addition to a single human reference (gold reference). We use BERT fine-tuned with paraphrase corpus to filter pseudo-references by checking the paraphrasability with the gold reference. Our experimental results of the WMT 2016 and 2017 datasets show that our method achieved higher correlation with human evaluation than the sentence BLEU (SentBLEU) baselines with a single reference and with unfiltered pseudo-references.
%R 10.18653/v1/W19-5360
%U https://aclanthology.org/W19-5360
%U https://doi.org/10.18653/v1/W19-5360
%P 521-525
Markdown (Informal)
[Filtering Pseudo-References by Paraphrasing for Automatic Evaluation of Machine Translation](https://aclanthology.org/W19-5360) (Yoshimura et al., WMT 2019)
ACL