NTT’s Machine Translation Systems for WMT19 Robustness Task
Soichiro Murakami, Makoto Morishita, Tsutomu Hirao, Masaaki Nagata
Correct Metadata for
Abstract
This paper describes NTT’s submission to the WMT19 robustness task. This task mainly focuses on translating noisy text (e.g., posts on Twitter), which presents different difficulties from typical translation tasks such as news. Our submission combined techniques including utilization of a synthetic corpus, domain adaptation, and a placeholder mechanism, which significantly improved over the previous baseline. Experimental results revealed the placeholder mechanism, which temporarily replaces the non-standard tokens including emojis and emoticons with special placeholder tokens during translation, improves translation accuracy even with noisy texts.- Anthology ID:
- W19-5365
- Volume:
- Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
- Month:
- August
- Year:
- 2019
- Address:
- Florence, Italy
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 544–551
- Language:
- URL:
- https://aclanthology.org/W19-5365/
- DOI:
- 10.18653/v1/W19-5365
- Bibkey:
- Cite (ACL):
- Soichiro Murakami, Makoto Morishita, Tsutomu Hirao, and Masaaki Nagata. 2019. NTT’s Machine Translation Systems for WMT19 Robustness Task. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 544–551, Florence, Italy. Association for Computational Linguistics.
- Cite (Informal):
- NTT’s Machine Translation Systems for WMT19 Robustness Task (Murakami et al., WMT 2019)
- Copy Citation:
- PDF:
- https://aclanthology.org/W19-5365.pdf
Export citation
@inproceedings{murakami-etal-2019-ntts,
title = "{NTT}{'}s Machine Translation Systems for {WMT}19 Robustness Task",
author = "Murakami, Soichiro and
Morishita, Makoto and
Hirao, Tsutomu and
Nagata, Masaaki",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5365/",
doi = "10.18653/v1/W19-5365",
pages = "544--551",
abstract = "This paper describes NTT{'}s submission to the WMT19 robustness task. This task mainly focuses on translating noisy text (e.g., posts on Twitter), which presents different difficulties from typical translation tasks such as news. Our submission combined techniques including utilization of a synthetic corpus, domain adaptation, and a placeholder mechanism, which significantly improved over the previous baseline. Experimental results revealed the placeholder mechanism, which temporarily replaces the non-standard tokens including emojis and emoticons with special placeholder tokens during translation, improves translation accuracy even with noisy texts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murakami-etal-2019-ntts">
<titleInfo>
<title>NTT’s Machine Translation Systems for WMT19 Robustness Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soichiro</namePart>
<namePart type="family">Murakami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsutomu</namePart>
<namePart type="family">Hirao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="given">Jimeno</namePart>
<namePart type="family">Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes NTT’s submission to the WMT19 robustness task. This task mainly focuses on translating noisy text (e.g., posts on Twitter), which presents different difficulties from typical translation tasks such as news. Our submission combined techniques including utilization of a synthetic corpus, domain adaptation, and a placeholder mechanism, which significantly improved over the previous baseline. Experimental results revealed the placeholder mechanism, which temporarily replaces the non-standard tokens including emojis and emoticons with special placeholder tokens during translation, improves translation accuracy even with noisy texts.</abstract>
<identifier type="citekey">murakami-etal-2019-ntts</identifier>
<identifier type="doi">10.18653/v1/W19-5365</identifier>
<location>
<url>https://aclanthology.org/W19-5365/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>544</start>
<end>551</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T NTT’s Machine Translation Systems for WMT19 Robustness Task %A Murakami, Soichiro %A Morishita, Makoto %A Hirao, Tsutomu %A Nagata, Masaaki %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1) %D 2019 %8 August %I Association for Computational Linguistics %C Florence, Italy %F murakami-etal-2019-ntts %X This paper describes NTT’s submission to the WMT19 robustness task. This task mainly focuses on translating noisy text (e.g., posts on Twitter), which presents different difficulties from typical translation tasks such as news. Our submission combined techniques including utilization of a synthetic corpus, domain adaptation, and a placeholder mechanism, which significantly improved over the previous baseline. Experimental results revealed the placeholder mechanism, which temporarily replaces the non-standard tokens including emojis and emoticons with special placeholder tokens during translation, improves translation accuracy even with noisy texts. %R 10.18653/v1/W19-5365 %U https://aclanthology.org/W19-5365/ %U https://doi.org/10.18653/v1/W19-5365 %P 544-551
Markdown (Informal)
[NTT’s Machine Translation Systems for WMT19 Robustness Task](https://aclanthology.org/W19-5365/) (Murakami et al., WMT 2019)
- NTT’s Machine Translation Systems for WMT19 Robustness Task (Murakami et al., WMT 2019)
ACL
- Soichiro Murakami, Makoto Morishita, Tsutomu Hirao, and Masaaki Nagata. 2019. NTT’s Machine Translation Systems for WMT19 Robustness Task. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 544–551, Florence, Italy. Association for Computational Linguistics.