@inproceedings{zheng-etal-2019-robust,
    title = "Robust Machine Translation with Domain Sensitive Pseudo-Sources: {B}aidu-{OSU} {WMT}19 {MT} Robustness Shared Task System Report",
    author = "Zheng, Renjie  and
      Liu, Hairong  and
      Ma, Mingbo  and
      Zheng, Baigong  and
      Huang, Liang",
    editor = "Bojar, Ond{\v{r}}ej  and
      Chatterjee, Rajen  and
      Federmann, Christian  and
      Fishel, Mark  and
      Graham, Yvette  and
      Haddow, Barry  and
      Huck, Matthias  and
      Yepes, Antonio Jimeno  and
      Koehn, Philipp  and
      Martins, Andr{\'e}  and
      Monz, Christof  and
      Negri, Matteo  and
      N{\'e}v{\'e}ol, Aur{\'e}lie  and
      Neves, Mariana  and
      Post, Matt  and
      Turchi, Marco  and
      Verspoor, Karin",
    booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-5367/",
    doi = "10.18653/v1/W19-5367",
    pages = "559--564",
    abstract = "This paper describes the machine translation system developed jointly by Baidu Research and Oregon State University for WMT 2019 Machine Translation Robustness Shared Task. Translation of social media is a very challenging problem, since its style is very different from normal parallel corpora (e.g. News) and also include various types of noises. To make it worse, the amount of social media parallel corpora is extremely limited. In this paper, we use a domain sensitive training method which leverages a large amount of parallel data from popular domains together with a little amount of parallel data from social media. Furthermore, we generate a parallel dataset with pseudo noisy source sentences which are back-translated from monolingual data using a model trained by a similar domain sensitive way. In this way, we achieve more than 10 BLEU improvement in both En-Fr and Fr-En translation compared with the baseline methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2019-robust">
    <titleInfo>
        <title>Robust Machine Translation with Domain Sensitive Pseudo-Sources: Baidu-OSU WMT19 MT Robustness Shared Task System Report</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Renjie</namePart>
        <namePart type="family">Zheng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hairong</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mingbo</namePart>
        <namePart type="family">Ma</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Baigong</namePart>
        <namePart type="family">Zheng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Liang</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ondřej</namePart>
            <namePart type="family">Bojar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rajen</namePart>
            <namePart type="family">Chatterjee</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christian</namePart>
            <namePart type="family">Federmann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mark</namePart>
            <namePart type="family">Fishel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yvette</namePart>
            <namePart type="family">Graham</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Barry</namePart>
            <namePart type="family">Haddow</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matthias</namePart>
            <namePart type="family">Huck</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antonio</namePart>
            <namePart type="given">Jimeno</namePart>
            <namePart type="family">Yepes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Philipp</namePart>
            <namePart type="family">Koehn</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">André</namePart>
            <namePart type="family">Martins</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christof</namePart>
            <namePart type="family">Monz</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matteo</namePart>
            <namePart type="family">Negri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurélie</namePart>
            <namePart type="family">Névéol</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mariana</namePart>
            <namePart type="family">Neves</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matt</namePart>
            <namePart type="family">Post</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marco</namePart>
            <namePart type="family">Turchi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Karin</namePart>
            <namePart type="family">Verspoor</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the machine translation system developed jointly by Baidu Research and Oregon State University for WMT 2019 Machine Translation Robustness Shared Task. Translation of social media is a very challenging problem, since its style is very different from normal parallel corpora (e.g. News) and also include various types of noises. To make it worse, the amount of social media parallel corpora is extremely limited. In this paper, we use a domain sensitive training method which leverages a large amount of parallel data from popular domains together with a little amount of parallel data from social media. Furthermore, we generate a parallel dataset with pseudo noisy source sentences which are back-translated from monolingual data using a model trained by a similar domain sensitive way. In this way, we achieve more than 10 BLEU improvement in both En-Fr and Fr-En translation compared with the baseline methods.</abstract>
    <identifier type="citekey">zheng-etal-2019-robust</identifier>
    <identifier type="doi">10.18653/v1/W19-5367</identifier>
    <location>
        <url>https://aclanthology.org/W19-5367/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>559</start>
            <end>564</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Robust Machine Translation with Domain Sensitive Pseudo-Sources: Baidu-OSU WMT19 MT Robustness Shared Task System Report
%A Zheng, Renjie
%A Liu, Hairong
%A Ma, Mingbo
%A Zheng, Baigong
%A Huang, Liang
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Martins, André
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F zheng-etal-2019-robust
%X This paper describes the machine translation system developed jointly by Baidu Research and Oregon State University for WMT 2019 Machine Translation Robustness Shared Task. Translation of social media is a very challenging problem, since its style is very different from normal parallel corpora (e.g. News) and also include various types of noises. To make it worse, the amount of social media parallel corpora is extremely limited. In this paper, we use a domain sensitive training method which leverages a large amount of parallel data from popular domains together with a little amount of parallel data from social media. Furthermore, we generate a parallel dataset with pseudo noisy source sentences which are back-translated from monolingual data using a model trained by a similar domain sensitive way. In this way, we achieve more than 10 BLEU improvement in both En-Fr and Fr-En translation compared with the baseline methods.
%R 10.18653/v1/W19-5367
%U https://aclanthology.org/W19-5367/
%U https://doi.org/10.18653/v1/W19-5367
%P 559-564
Markdown (Informal)
[Robust Machine Translation with Domain Sensitive Pseudo-Sources: Baidu-OSU WMT19 MT Robustness Shared Task System Report](https://aclanthology.org/W19-5367/) (Zheng et al., WMT 2019)
ACL