
Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 11–28
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

11

Findings of the WMT 2019 Shared Task on Automatic Post-Editing

Rajen Chatterjee(1), Christian Federmann(2) Matteo Negri(3), Marco Turchi(3)
(1) Apple Inc., Cupertino, CA, USA

(2) Microsoft Cloud+AI, Redmond, WA, USA
(3) Fondazione Bruno Kessler, Trento, Italy

Abstract

We present the results from the 5th round
of the WMT task on MT Automatic Post-
Editing. The task consists in automatically
correcting the output of a “black-box” ma-
chine translation system by learning from
human corrections. Keeping the same gen-
eral evaluation setting of the previous four
rounds, this year we focused on two lan-
guage pairs (English-German and English-
Russian) and on domain-specific data (In-
formation Technology). For both the lan-
guage directions, MT outputs were pro-
duced by neural systems unknown to par-
ticipants. Seven teams participated in the
English-German task, with a total of 18
submitted runs. The evaluation, which was
performed on the same test set used for
the 2018 round, shows further progress in
APE technology: 4 teams achieved bet-
ter results than last year’s winning sys-
tem, with improvements up to -0.78 TER
and +1.23 BLEU points over the baseline.
Two teams participated in the English-
Russian task submitting 2 runs each. On
this new language direction, characterized
by a higher quality of the original trans-
lations, the task proved to be particularly
challenging. Indeed, none of the sub-
mitted runs improved the very high re-
sults of the strong system used to produce
the initial translations (16.16 TER, 76.20
BLEU).

1 Introduction

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee et
al., 2015), from the application point of view the

task is motivated by its possible uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

In its 5th round, the APE shared task organized
within the WMT Conference on Machine Transla-
tion kept the same overall evaluation setting of the
previous four rounds. Specifically, the participat-
ing systems had to automatically correct the output
of an unknown “black box” MT system by learn-
ing from human revisions of translations produced
by the same system.

This year, the task focused on two language
pairs (English-German and English-Russian) and,
in continuity with the last three rounds, on data
coming from the Information Technology domain.
While in 2018 one of the proposed subtasks was
still focusing on the correction of phrase-based
MT output, this year only neural MT (NMT) out-
put has been considered. However, this year’s
campaign allows both for a fair assessment of the
progress in APE technology and for tests in more
challenging conditions. On one side, reusing the
same test English-German set used last year, the
evaluation framework allows us for a direct com-
parison with the last year’s outcomes at least on
one language. On the other side, dealing with a
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difficult language like Russian and only with high-
quality NMT output, also this round presented par-
ticipants with an increased level of difficulty with
respect to the past.

Seven teams participated in the English-
German task, submitting 18 runs in total. Two
teams participated in the English-Russian task,
submitting 2 runs each. Similar to last year, all
the teams developed their systems based on neu-
ral technology, which confirms to be the state-of-
the-art approach to APE. Only in one case, in-
deed, a participating team achieved its highest re-
sults (but with no improvement over the baseline)
with a phrase-based APE system. In most of the
cases, participants experimented with the Trans-
former architecture (Vaswani et al., 2017), either
directly or by adapting it to the task (see Sec-
tion 3). Another common trait of the submit-
ted systems is the reliance on the consolidated
multi-source approach (Zoph and Knight, 2016;
Libovický et al., 2016), which is able to exploit
information from both the MT output to be cor-
rected and the corresponding source sentence. The
third aspect common to all submissions is the ex-
ploitation of synthetic data, either those provided
together with the task data (Negri et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2016) or
similar, domain-specific resources created ad-hoc
by participants.

In the English-German task, the evaluation was
performed on the same test set used in 2018,
whose “gold” human post-edits were kept undis-
closed to participants for the sake of future com-
parisons. Evaluating on the same benchmark
allowed to observe further technology improve-
ments over the past. Last year, the largest gain
over the baseline (16.84 TER, 74.73 BLEU) was
-0.38 TER (16.46) and +0.8 BLEU (75.53). This
year, four teams achieved better results than last
year’s best submission. The top-ranked system
achieved 16.06 TER (-0.78 with respect to the
baseline) and 75.96 BLEU (+1.23). Most notice-
ably, the fact that the TER/BLEU differences be-
tween the top four primary submissions are not
statistically significant indicates that the observed
progress is not isolated.

The newly proposed English-Russian task rep-
resents a more challenging evaluation scenario,
mainly due to the higher quality of the NMT out-
put to be corrected. In this case, even the best
submission (16.59 TER, 75.27 TER) was unable

to beat the baseline (16.16 TER, 76.20 BLEU).
These results confirm one of the main findings of
previous rounds (Bojar et al., 2017; Chatterjee et
al., 2018a): improving high-quality MT output re-
mains the biggest challenge for APE. This moti-
vates further research on precise and conservative
solutions able to mimic human behaviour by per-
forming only the minimum amount of edit opera-
tions needed.

2 Task description

In continuity with all the previous rounds of the
APE task, participants were provided with train-
ing and development data consisting of (source,
target, human post-edit) triplets, and were asked
to return automatic post-edits for a test set of un-
seen (source, target) pairs.

2.1 Data
This year, the evaluation was performed on two
language pairs, English-German and English-
Russian. For both the subtasks, data were se-
lected from the Information Technology (IT) do-
main. As emerged from the previous evaluations,
the selected target domain is specific and repetitive
enough to allow supervised systems to learn from
the training set useful correction patterns that are
also re-applicable to the test set.

The released training and development sets con-
sist of (source, target, human post-edit) triplets in
which:

• The source (SRC) is a tokenized English sen-
tence;

• The target (TGT) is a tokenized Ger-
man/Russian translation of the source, which
was produced by a black-box system un-
known to participants. For both the lan-
guages, translations were obtained from neu-
ral MT systems:1 this implies that their over-
all quality is generally high, making the task
harder compared to previous rounds, which

1For English-German, the NMT system was trained with
generic and in-domain parallel training data using the atten-
tional encoder-decoder architecture (Bahdanau et al., 2014)
implemented in the Nematus toolkit (Sennrich et al., 2017).
We used byte-pair encoding (Sennrich et al., 2016) for vo-
cabulary reduction, mini-batches of 100, word embeddings
of 500 dimensions, and gated recurrent unit layers of 1,024
units. Optimization was done using Adam and by re-shuffling
the training set at each epoch. For English-Russian, the
NMT system used was the Microsoft Translator production
system, which was trained with both generic and in-domain
parallel training data.
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Number of instances
Training Development Test Additional Resources

English-German 13,442 1,000 1,023
eSCAPE-PBSMT: 7,258,533
eSCAPE-NMT: 7,258,533
Artificial: 4.5M

English-Russian 15,089 1,000 1,023 eSCAPE-NMT: 7.7 M
Table 1: Data statistics.

focused only (until 2017) or also (as in 2018)
on the correction of the output of phrase-
based systems.

• The human post-edit (PE) is a manually-
revised version of the target, which was pro-
duced by professional translators.

Test data consists of (source, target) pairs hav-
ing similar characteristics of those in the training
set. Human post-edits of the test target instances
are left apart to measure system performance.

For the English-German subtask, the same in-
domain data2 collected for last year’s round of the
task have been used. The training and develop-
ment set respectively contain 13,442 and 1,000
triplets, while the test set consists of 1,023 in-
stances. Participants were also provided with
two additional training resources, which were
widely used in last year’s round. One (called
“Artificial” in Table 1) is the corpus of 4.5 mil-
lion artificially-generated post-editing triplets de-
scribed in (Junczys-Dowmunt and Grundkiewicz,
2016). The other resource is the English-German
section of the eSCAPE corpus (Negri et al., 2018).
It comprises 14.5 million instances, which were
artificially generated both via phrase-based and
neural translation (7.25 millions each) of the same
source sentences.

For the English-Russian subtask, Microsoft
Office localization data have been used. This
material, which mainly consists of short seg-
ments (menu commands, short messages, etc.), is
shared with the English-Russian Quality Estima-
tion shared task.3 The training and development
set respectively contain 15,089 and 1,000 triplets,
while the test set comprises 1,023 instances. For
this language pair, the eSCAPE corpus has been
extended to provide participants with additional

2Released by the European Project QT21 (Specia et al.,
2017).

3http://www.statmt.org/wmt19/qe-task.
html

training material.4

Table 1 provides basic statistics about the data
of the two subtasks.

2.1.1 Complexity indicators: repetition rate
Table 2 provides a view of the data from a task dif-
ficulty standpoint. For each dataset released in the
five rounds of the APE task, it shows the repeti-
tion rate of SRC, TGT and PE elements, as well as
the TER (Snover et al., 2006) and the BLEU score
(Papineni et al., 2002) of the TGT elements (i.e.
the original target translations).

The repetition rate measures the repetitiveness
inside a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-
ing the geometric mean. Larger values indicate a
higher text repetitiveness and, as discussed in (Bo-
jar et al., 2016; Bojar et al., 2017; Chatterjee et al.,
2018a), suggest a higher chance of learning from
the training set correction patterns that are appli-
cable also to the test set. In the previous rounds
of the task, we considered the large differences in
repetitiveness across the datasets as a possible ex-
planation for the variable gains over the baseline
obtained by participants. In this perspective, the
low system performance observed in the APE15
task and in the APE17 German-English subtask
was in part ascribed to the low repetition rate in
the data. In contrast, much higher repetition rates
in the data likely contributed to facilitate the prob-
lem in the APE16 task and in the APE17 English-
German subtask, in which most of the participants
achieved significant gains over the baseline. Al-
though in both the APE18 subtasks the repeti-
tion rate values were relatively high, evaluation
results shown that the influence of data repetitive-
ness on final APE performance is marginal. In-
deed, while in the last year’s PBSMT subtask the
improvements over the baseline were impressive (-

4This newly released artificial dataset and a short de-
scription of the methodology adopted for its creation
can be found at http://hltshare.fbk.eu/QT21/
eSCAPE.html.
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2015 2016 2017 2017 2018 2018 2019 2019
Language En-Es En-De En-De De-En En-De En-De En-De En-Ru
Domain News IT IT Medical IT IT IT IT
MT type PBSMT PBSMT PBSMT PBSMT PBSMT NMT NMT NMT
Repet. Rate SRC 2.905 6.616 7.216 5.225 7.139 7.111 7.111 18.25
Repet. Rate TGT 3.312 8.845 9.531 6.841 9.471 9.441 9.441 14.78
Repet. Rate PE 3.085 8.245 8.946 6.293 8.934 8.941 8.941 13.24
Baseline TER 23.84 24.76 24.48 15.55 24.24 16.84 16.84 16.16
Baseline BLEU n/a 62.11 62.49 79.54 62.99 74.73 74.73 76.20

Table 2: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). Grey columns refer to data covering different language pairs
and domains with respect to this year’s evaluation round.

6.24 TER, +9.53 BLEU points), in the NMT sub-
task (whose data were reused this year) the quality
gains were considerably smaller (-0.38 TER and
+0.8 BLEU points). As discussed in Section 4.1,
also this year we observe a similar situation: espe-
cially for English-Russian, the high repetition rate
values reported in Table 2, which are the highest
ones across all the APE data released so far, are not
enough to determine quality improvements com-
parable to previous rounds. This suggests that,
although it used to play an important role when
dealing with lower quality MT output in the first
rounds of the APE task, text repetitiveness has less
influence on final performance compared to other
complexity indicators.

2.1.2 Complexity indicators: MT quality

Indeed, another important aspect that determines
the difficulty of APE is the initial quality of the
MT output to be corrected. This can be measured
by computing the TER (↓) and BLEU (↑) scores
(last two rows in Table 2) using the human post-
edits as reference.

As discussed in (Bojar et al., 2017; Chatterjee et
al., 2018a), numeric evidence of a higher quality
of the original translations can indicate a smaller
room for improvement for APE systems (having,
at the same time, less to learn during training and
less to correct at test stage). On one side, in-
deed, training on good (or near-perfect) automatic
translations can drastically reduce the number of
learned correction patterns. On the other side,
testing on similarly good translations can drasti-
cally reduce the number of corrections required
and the applicability of the learned patterns, thus
making the task more difficult. As observed in
the previous APE evaluation rounds, there is a
noticeable correlation between translation quality

and systems’ performance. In 2016 and 2017,
on English-German data featuring a similar level
of quality (24.76/24.48 TER, 62.11/62.49 BLEU),
the top systems achieved significant improvements
over the baseline (-3.24 TER and +5.54 BLEU
in 2016, -4.88 TER and +7.58 BLEU in 2017).
In 2017, on higher quality German-English data
(15.55 TER, 79.54 BLEU), the observed gains
were much smaller (-0.26 TER, +0.28 BLEU). In
2018, the correction of English-German transla-
tions produced by a phrase-based system (24.24
TER, 62.99 BLEU) yielded much larger gains
(up to -6.24 TER and +9.53 BLEU) compared
to the correction of higher-quality neural transla-
tions (16.84 TER, 74.73 BLEU), which resulted
in TER/BLEU variations of less than 1.00 point.
As discussed in Section 4, also this year’s results
confirm the strict correlation between the quality
of the initial translations and the actual potential
of APE.

2.1.3 Complexity indicators: TER
distribution

Further indications about the difficulty of the two
subtasks are provided by Figures 1 and 2, which
plot the TER distribution for the items in the two
test sets. As shown in Figure 1, the distribution
for English-German is quite skewed towards low
TER values, with almost 50% of the test test items
having a TER between 0 and 10 that indicates
their very high quality (in other terms, they re-
quire few edits). In particular, the proportion of
“perfect” test instances having TER=0 (i.e. items
that should not be modified by the APE systems)
is quite high (25.2% of the total).5 For these test

5This value is considerably lower than the proportion ob-
served in the challenging APE17 German-English test set
(45.0%) but still a considerably higher value compared to
“easier” test sets released for other rounds of the task.
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Figure 1: TER distribution in the English-German
test set

Figure 2: TER distribution in the English-Russian
test set

items, any correction made by the APE systems
will be treated as unnecessary and penalized by
automatic evaluation metrics. This problem calls
for conservative and precise systems able to prop-
erly fix errors only in the remaining test items,
leaving the “perfect” ones unmodified.

Data skewedness is exacerbated in the English-
Russian test set, in which 63.5% of the instances
have a TER between 0 and 10 (in particular, 61.4%
of them are perfect translations). Together with
the high BLEU score, this contributes to make the
English-Russian task considerably more difficult
compared to the English-German one (as well as
compared to most of the APE test sets released so
far).

As discussed in Section 4, also this year’s evalu-
ation results confirm the strict correlation between
the quality of the initial translations and the actual
potential of APE.

2.2 Evaluation metrics

System performance was evaluated both by means
of automatic metrics and manually. Automatic
metrics were used to compute the distance be-
tween automatic and human post-edits of the
machine-translated sentences present in the test
sets. To this aim, TER and BLEU (case-sensitive)
were respectively used as primary and secondary
evaluation metrics. Systems were ranked based on
the average TER calculated on the test set by using
the TERcom6 software: lower average TER scores
correspond to higher ranks. BLEU was com-
puted using the multi-bleu.perl package7 available

6http://www.cs.umd.edu/˜snover/tercom/
7https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/

in MOSES.
Manual evaluation was conducted via source-

based direct human assessment (Graham et al.,
2013; Cettolo et al., 2017; Bojar et al., 2018)
as implemented by Appraise (Federmann, 2012).
Details are discussed in Section 6.

2.3 Baseline

In continuity with the previous rounds, the official
baseline results were the TER and BLEU scores
calculated by comparing the raw MT output with
the human post-edits. In practice, the baseline
APE system is a “do-nothing” system that leaves
all the test targets unmodified. Baseline results,
the same shown in Table 2, are also reported in
Tables 4 and 5 for comparison with participants’
submissions.8

For each submitted run, the statistical signif-
icance of performance differences with respect
to the baseline was calculated with the bootstrap
test (Koehn, 2004).

3 Participants

Seven teams submitted a total of 18 runs for the
English-German subtask. Two of them partici-
pated also in the English-Russian subtask by sub-

generic/multi-bleu.perl
8In addition to the do-nothing baseline, in the first three

rounds of the task we also compared systems’ performance
with a re-implementation of the phrase-based approach firstly
proposed by Simard et al. (2007), which represented the com-
mon backbone of APE systems before the spread of neural
solutions. As shown in (Bojar et al., 2016; Bojar et al., 2017),
the steady progress of neural APE technology has made the
phrase-based solution not competitive with current methods
reducing the importance of having it as an additional term of
comparison. In 2018, we hence opted for considering only
one baseline.
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ID Participating team
ADAPT DCU ADAPT Centre & Dublin City University, Ireland (Shterionov et al., 2019)
FBK Fondazione Bruno Kessler, Italy (Tebbifakhr et al., 2019)
POSTECH Pohang University of Science and Technology, South Korea (Lee et al., 2019)
UDS Saarland University, Germany (Xu et al., 2019)
UNBABEL Unbabel, Portugal (Lopes et al., 2019)
USAAR DFKI Saarland University & German Research Center for Artificial Intelligence, Germany (Pal et al., 2019)
IC USFD Imperial College London & University of Sheffield, United Kingdom

Table 3: Participants in the WMT19 Automatic Post-Editing task.

mitting 2 runs each. Participants are listed in Ta-
ble 3, and a short description of their systems is
provided in the following.

ADAPT Centre & Dublin City University.
The ADAPT DCU team participated in both the
subtasks proposed this year. Their submissions
pursue two main objectives, namely: i) investi-
gating the effect of adding extra information in
the form of prefix tokens in a neural APE sys-
tem; and ii) assessing whether an SMT-based ap-
proach can be effective for post-editing NMT out-
put. The neural APE system exploits a multi-
source approach based on Marian-NMT.9 Train-
ing data were augmented with two types of extra
context tokens that identify partitions of the train-
ing set that may be relevant to guide system’s be-
haviour (i.e. to identify features in the dataset with
a very close relation to the editing patterns the
system is supposed to learn). Such partitions are
based on sentence length and topic information.
Hence, the prepended tokens respectively state the
data partition based on the number of source to-
kens and the topic induced via LDA clustering
(Blei et al., 2003). The statistical APE models,
which are based on Moses (Koehn et al., 2007),
were trained to explore the idea of interleaving
different MT technologies to improve NMT out-
put quality. All the models are built by taking
advantage of both the released training material
and the provided artificial data (Negri et al., 2018;
Junczys-Dowmunt and Grundkiewicz, 2016).

Fondazione Bruno Kessler. Also FBK partici-
pated in both the subtasks. Their submissions fo-
cus on mitigating the “over-correction” problem
in APE, that is the systems’ tendency to rephrase
and correct MT output that is already acceptable,
thus producing translations that will be penalized
by evaluation against human post-edits. Following
(Chatterjee et al., 2018b), the underlying idea is
that over-correction can be prevented by inform-

9https://marian-nmt.github.io/

ing the system about the predicted quality of the
MT output or, in other terms, the expected amount
of corrections needed. The proposed solution is
based on prepending a special token to the source
text and the MT output, so to indicate the re-
quired amount of post-editing. Three different to-
kens are used, namely “no post-edit” (no edits are
required), “light post-edit” (minimal edits are re-
quired), and “heavy post-edit” (a large number of
edits are required. At training time, the instances
are labelled based on the TER computed between
the MT output and its post-edited version, with the
boundary between light and heavy post-edit set to
TER=0.4 based on the findings reported in (Turchi
et al., 2013; Turchi et al., 2014). At test time, to-
kens are predicted with two approaches. One is
based on a classifier obtained by fine-tuning BERT
(Devlin et al., 2018) on the in-domain data. The
other approach exploits a retrieval-based method
similar to (Farajian et al., 2017): given a query
containing the source and the MT output to be
post-edited, it: i) retrieves similar triplets from the
training data, ii) ranks them based on the sentence
level BLEU score between the MT output and the
post-edit, and iii) creates the token based on the
TER computed between the MT output and the
post-edit of the most similar triplet. The back-
bone architecture is the multi-source extension of
Transformer (Vaswani et al., 2017) described in
(Tebbifakhr et al., 2018), which is trained both on
the task data and on the available artificial corpora.

Pohang University of Science and Technology.
POSTECH’s system (English-German subtask) is
a multi-source model that extends the Transformer
implementation of the OpenNMT-py (Klein et al.,
2017) library. It includes: i) a joint encoder that
is able to generate joint representations reflecting
the relationship between two input sources (SRC,
TGT) with optional future masking to mimic the
general decoding process of machine translation
systems, and ii) two types of multi-source atten-
tion layers in the decoder that computes the atten-
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tion between the decoder state and the two outputs
of the encoder. Therefore, four different model
variants were suggested in terms of the existence
of the encoder future mask and the type of the
multi-source attention layer in the decoder. The
eSCAPE corpus (Negri et al., 2018) was filtered
to contain similar statistics as the official training
dataset. During training, various teacher-forcing
ratios were adjusted to alleviate the exposure bias
problem. After training four variants with vari-
ous teacher-forcing ratios, the final submissions
were obtained from an ensemble of models. These
are: 1) the primary submission that ensembles the
variants with the two best TER scores in each ar-
chitecture, 2) the contrastive submission that en-
sembles the variants with the best TER scores in
each architecture, 3) the contrastive submission
that ensembles two variants from each architec-
ture, achieving the best TER and BLEU, respec-
tively.

Saarland University. UdS’s participation
(English-German subtask) is based on a multi-
source Transformer model for context-level
machine translation (Zhang et al., 2018) imple-
mented with the Neutron implementation (Xu
and Liu, 2019) for the Transformer translation
model (Vaswani et al., 2017). To improve the
robustness of the training, and inspired by (Cheng
et al., 2018), the APE task is jointly trained with
the de-noising encoder task, which adds noises
distribution directly to the post-editing results’
embedding as machine translation outputs and
tries to recover the original post-editing results.
Both Gaussian noise and uniform noise were tried
for the de-noising encoder task. The synthetic
eSCAPE corpus (Negri et al., 2018) was also used
for the training. Contrastive submissions were
generated with the best averaged models of 5
adjacent checkpoints of 2 kinds of noise, and the
primary submission is obtained with the ensemble
of 5 models (4 averaged models + 1 model saved
for every training epoch).

Unbabel. Following (Correia and Martins,
2019), Unbabel’s submission (English-German
subtask) adapts BERT (Devlin et al., 2018) to the
APE task with an encoder-decoder framework.
The system consists in a BERT encoder ini-
tialised with the pretrained model’s weights and
a BERT decoder initialised analogously, where
the multi-head context attention is initialised with

the self-attention weights. Additionally, source
embeddings, target embeddings and projection
layer (Press and Wolf, 2017) are shared, as well
as the self-attention weights of the encoder and
decoder. The system exploits BERT training
schedule with streams A and B: the encoder
receives as input both the source and the MT
output separated by the special symbol “[SEP]”,
assigning to the first “A” segment embeddings and
to the latter “B” segment embeddings. Regarding
the BERT decoder, they use just the post-edit
with “B” segment embeddings. In addition, as the
NMT system has a strong in-domain performance,
a conservativeness factor to avoid over-correction
is explored. Similarly to (Junczys-Dowmunt and
Grundkiewicz, 2016), a penalty is added during
beam decoding (logits or log probabilities) to
constrain the decoding to be as close as possible
to the input – both the source and the MT output
are considered, which allows to copy from the
source – in order to avoid over edition of the
MT segment. This penalty is tuned over the
development set. In addition to the shared task
in-domain data, system training exploits a variant
of the eSCAPE corpus built on a closer in-domain
parallel corpus (IT domain) provided by the
Quality Estimation shared task.

Saarland University & German Research Cen-
ter for Artificial Intelligence. USAAR DFKI’s
participation (English-German subtask) is based
on a multi-encoder adaptation of the Transformer
architecture. The system consists in: i) a Trans-
former encoder block for the source sentence, fol-
lowed by ii) a Transformer decoder block, but
without masking, for self-attention on the MT seg-
ment, which effectively acts as second encoder
combining source and MT output, and iii) feeds
this representation into a final decoder block gen-
erating the post-edit. The intuition behind the pro-
posed architecture is to generate better represen-
tations via both self- and cross- attention and to
further facilitate the learning capacity of the feed-
forward layer in the decoder block. Also in this
case, model training takes advantage of the eS-
CAPE synthetic data (Negri et al., 2018).

University of Sheffield & Imperial College Lon-
don. IC USFD’s submission (English-German
subtask) is based on the dual-source Trans-
former model (Junczys-Dowmunt and Grund-
kiewicz, 2018), which was re-implemented in the
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Tensor2Tensor (Vaswani et al., 2017) toolkit. The
model was enriched with a copying mechanism
that prevents unnecessary corrections. In addi-
tion to the main training data, the primary sub-
mission uses the EN-DE eSCAPE data (Negri et
al., 2018). The contrastive submission uses data
triplets where source and target are genuine data,
and MT is a modified target (200K). This modified
target mimics MT by simulating errors in the task
training data. Sentences where error simulation is
possible are selected from in-domain corpora (eS-
CAPE, as well as the in-domain data released with
the WMT18 Quality Estimation task).

4 Results

Participants’ results are shown in Tables 4
(English-German) and 5 (English-Russian). The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as reference, which is the
APE task primary evaluation metric (“TER (pe)”).
The two tables also report the BLEU score com-
puted using human post-edits (“BLEU (pe)” col-
umn), which represents our secondary evaluation
metric. These results are discussed in Section 4.1.

Table 4 includes four additional columns, which
show the TER/BLEU scores computed using ex-
ternal references (“TER (ref)” and “BLEU (ref)”)
as well as the multi-reference TER/BLEU scores
computed using human post-edits and external ref-
erences (“TER (pe+ref)” and “BLEU (pe+ref)”).
In Section 4.2, these figures are respectively used
to discuss systems’ capability to reflect the post-
editing style of the training data and their tendency
to produce unnecessary corrections of acceptable
MT output. Since external references are available
only for German, this analysis was not feasible for
the English-Russian task.

4.1 Automatic metrics computed using
human post-edits

Different from the past, this year the primary
(“TER (pe)”) and secondary evaluation metric
(“BLEU (pe)”) produce slightly different rank-
ings.10 For English-German, system results are
quite close to each other, up to the point that i)
TER differences between the top eight submis-
sions are not statistically significant and ii) all the

10The correlation between the ranks obtained by the two
metrics is 0.97 for the English-German subtask and 0.7 for
the English-Russian subtask.

submissions with a TER score equal or lower than
the baseline are concentrated in a performance in-
terval of less than 0.8 TER points and less than 1.2
BLEU points. This compression can contribute
to explain the ranking differences, especially at
higher ranks where discriminating between strong
systems with almost identical performance is par-
ticularly difficult. However, for the sake of fu-
ture analysis or alternative views of this year’s out-
comes, it’s worth remarking that the 2nd, 3rd and
5th runs in terms of TER (all by the same team
–POSTECH) respectively represent the top three
submissions in terms of BLEU.

For English-Russian, the distance between the
top and the worst submissions is larger, but also in
this case the BLEU-based ranking is not identical
to the TER-based one. Though with a negligible
margin, the worst run in terms of TER would rank
2nd in terms of BLEU.

English-German subtask. In order to measure
the progress with respect to last year’s round of the
APE task, for this language pair the evaluation has
been performed with the same data used for the
NMT subtask in 2018. Last year, the majority of
the participants’ scores fell in a range of less than
one TER/BLEU point improvement over the do-
nothing baseline (16.84 TER, 74.73 BLEU), be-
ing 16.46 TER (-0.38) and 75.53 BLEU (+0.8)
the scores and the corresponding quality gains
achieved by the top submission. This year, eight
submissions achieved a TER reduction larger than
0.4 points and a BLEU increase of more than 0.9
points. The top submission, in particular, obtained
improvements up to -0.78 TER and +1.23 BLEU
points over the baseline. Although correcting the
output of a neural MT system still proves to be
quite hard, we take the fact that 4 teams achieved
better results than last year’s winning system as an
indicator of technology advancements.

English-Russian subtask. This subtask proved
to be more challenging compared to the English-
German subtask. Final results are indeed much
worse: none of the four runs submitted by the
two participating teams was able to beat the do-
nothing baseline (16.16 TER, 76.2 BLEU). Even
for the top submission (16.59 TER, 75.27 BLEU),
results’ difference with respect to the baseline is
statistically significant. One possible cause of the
higher difficulty of the English-Russian subtask is
the fact that dealing with a morphology-rich lan-
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TER BLEU TER BLEU TER BLEU
ID (pe) (pe) (ref) (ref) (pe+ref) (pe+ref)
UNBABEL Primary 16.06* 75.96 41.66 44.95 15.58 78.1
POSTECH Primary 16.11* 76.22 42.04 44.57 15.68 78.08
POSTECH Contrastive (var2Ens8) 16.13* 76.21 42.09 44.53 15.73 78.05
USAAR DFKI Primary 16.15* 75.75 41.84 44.65 15.69 77.84
POSTECH Contrastive (top1Ens4) 16.17* 76.15 42.09 44.52 15.74 78.01
UNBABEL Contrastive (2) 16.21* 75.7 41.59 45.08 15.72 77.98
UNBABEL Contrastive (1) 16.24* 75.7 41.62 45.01 15.76 77.97
FBK Primary 16.37* 75.71 42.18 44.39 15.90 77.54
FBK Contrastive 16.61† 75.28 42.12 44.49 16.1 77.43
UDS Primary 16.77† 75.03 42.64 43.78 16.34 76.83
IC USFD Contrastive 16.78† 74.88 42.45 44.01 16.31 76.82
UDS Contrastive (Gaus) 16.79† 75.03 42.55 44.0 16.33 76.87
UDS Contrastive (Uni) 16.80† 75.03 42.66 43.79 16.37 76.85
IC USFD Primary 16.84† 74.8† 42.58 43.86 16.41 76.68
Baseline 16.84 74.73 42.24 44.2 16.27 76.83
ADAPT DCU Contrastive (SMT) 17.07 74.3 42.40 44.14 16.54 76.36
ADAPT DCU Primary 17.29 74.29 42.41 44.09 16.81 76.51
USAAR DFKI Contrastive 17.31 73.97 42.45 43.71 16.87 76.06
ADAPT DCU Contrastive (LEN) 17.41 74.01 42.44 44.01 16.91 76.2

Table 4: Results for the WMT19 APE English-German subtask – average TER (↓), BLEU score (↑). The symbol “*” indicates
results differences between runs that are not statistically significant. The symbol “†” indicates a difference from the MT baseline
that is not statistically significant.

TER BLEU
ID (pe) (pe)
Baseline 16.16 76.2
ADAPT DCU Contrastive 16.59 75.27
ADAPT DCU Primary 18.31 72.9
FBK Primary 19.34 72.42
FBK Contrastive 19.48 72.91

Table 5: Results for the WMT19 APE English-Russian subtask – average TER (↓), BLEU score (↑).

guage like Russian is problematic not only for MT
but also from the APE standpoint. Under similar
data conditions (the training sets of the two sub-
tasks differ by ∼1,650 instances), the training set
of a morphology-rich language is likely to be more
sparse compared to other languages. The other
possible explanation lies in the higher quality of
the original translations (our second complexity
indicator discussed in Section 2.1.2), which re-
duces the room for improvement with APE and,
at the same time, increases the possibility to dam-
age MT output that is already correct. From the
MT quality point of view, according to the base-
line results shown in Table 2, the English-Russian
dataset used for this year’s campaign is the second
most difficult benchmark released in five rounds
of the APE task. Also the TER distribution of
the test set instances (our third complexity indica-

tor discussed in Section 2.1.3) indicates the higher
difficulty of the task, which is characterized by
the highest number of perfect translations across
the five rounds of the APE shared task (61.4%).
In terms of repetition rate, as observed in Sec-
tion 2.1.1, English-Russian data considerably dif-
fer from those released for the previous rounds of
the task. The much larger values shown in Table
2 are not surprising considering that this material
is drawn from Microsoft Office localization data
that mainly consist of short segments (e.g. menu
commands), which are likely produced based on
standardized guidelines. However, also this year
text repetitiveness seems to have a smaller influ-
ence on final performance compared to quality of
the initial translations. Besides all these elements,
the higher difficulty of the English-Russian sub-
task is also indirectly suggested by the low number
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of participants. Likely, poor results observed on
the development set during system development
(i.e. the difficulty to beat the do-nothing baseline)
discouraged other potential participants.

4.2 Automatic metrics computed using
external references

By learning from (SRC, TGT, PE) triplets, APE
systems’ goal is to perform a “monolingual trans-
lation” from raw MT output into its correct ver-
sion. In this translation process, the same sentence
can be corrected in many possible ways that make
the space of possible valid outputs potentially very
large. Ideally, from this space, APE systems
should select solutions that reflect as much as pos-
sible the post-editing style of the training data (in
real-use settings, this can be the style/lexicon of
specific users, companies, etc.). However, noth-
ing prevents to end up with outputs that partially
satisfy this constraint. In light of these consid-
erations, TER and BLEU scores computed using
human post-edits as reference represent a reliable
measure of quality but:

1. They provide us with partial information on
how systems’ output reflects the post-editing
style of the training data;

2. They are not informative at all about the
amount of valid corrections that are not
present in the human post-edits.

In order to shed light on these aspects, in previ-
ous rounds of the task, further analysis was per-
formed by taking advantage of reference trans-
lations. In continuity with the past, in Sections
4.2.1 and 4.2.2 we re-propose this analysis for the
English-German subtask, the only one for which
external references are available.

4.2.1 Output style
To gain further insights on point 1. (i.e. sys-
tem’s capability to learn the post-editing style of
the training data), the “TER (ref)” and “BLEU
(ref)” columns in Table 4 show the TER and
BLEU scores computed against independent refer-
ence translations. The rational behind their com-
putation is that differences in TER/BLEU(pe) and
TER/BLEU(ref) can be used as indicators of the
“direction” taken by the trained models (i.e. ei-
ther towards humans’ post-editing style or to-
wards a generic improvement of the MT output).

Since independent references are usually very dif-
ferent from conservative human post-edits of the
same TGT sentences, all the TER/BLEU scores
measured using independent references are ex-
pected to be worse. However, if our hypothe-
sis holds true, visible differences in the baseline
improvements measured with TER/BLEU(pe) and
TER/BLEU(ref) should indicate system’s ability
to model the post-editing style of the training
data. In particular, larger gains measured with
TER/BLEU(pe) will be associated to this desired
ability.

As can be seen in Table 4, systems’ results
on English-German show this tendency. Look-
ing at the improvements over the baseline, those
measured by computing TER and BLEU scores
against human post-edits (i.e. TER/BLEU(pe)) are
often larger than those computed against indepen-
dent references (i.e. TER/BLEU(ref)). In terms
of TER, this holds true for most of the submitted
runs, with the best system that shows a difference
of 0.2 TER points in the gains over the baseline
computed with TER(pe) (-0.78) and those com-
puted with TER(ref) (-0.58). On average, for the
runs achieving improvements over the baseline,
the difference in the gains over the baseline com-
puted with TER(pe) and TER(ref) is respectively
-0.41 and -0.08. In terms of BLEU, the differ-
ences are more visible. The best system improves
over the baseline by 1.23 points with BLEU(pe)
and 0.75 points with BLEU(ref), while the aver-
age difference in the gains over the baseline is 0.8
with BLEU(pe) and 0.2 with BLEU (ref). The
larger (0.32/0.6) average improvements over the
baseline observed with TER/BLEU computations
against human post-edits can be explained by sys-
tems’ tendency to reflect the post-editing style of
the training data.

4.2.2 Over-corrections
To shed light on point 2. (i.e. system’s ten-
dency to produce unnecessary corrections of ac-
ceptable MT output), the “TER (pe+ref)” and
“BLEU (pe+ref)” columns in Table 4 show the
multi-reference TER and BLEU scores com-
puted against post-edits and independent ref-
erences. The rational behind their computa-
tion is that differences in TER/BLEU(pe) and
TER/BLEU(pe+ref) can be used to analyze the
quality of the unnecessary corrections performed
by the systems (or, in other words, to study
the impact of systems’ tendency towards “over-
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correction”). APE corrections of a given MT out-
put can indeed be of different types, namely: i)
correct edits of a wrong passage, ii) wrong ed-
its of a wrong passage, iii) correct edits of a cor-
rect passage and iv) wrong edits of a correct pas-
sage. TER/BLEU scores computed against hu-
man post-edits work reasonably well in captur-
ing cases i)-ii) by matching APE systems’ out-
put with human post-edits: for wrong MT output
passages (i.e. those changed by the post-editor),
they inform us about the general quality of auto-
matic corrections (i.e. how close they are to the
post-editor’s actions). Cases iii)-iv), in contrast,
are more problematic since any change performed
by the system to a correct passage (i.e. those
that were not changed by the post-editor) will al-
ways be penalized by automatic comparisons with
human post-edits. Although discriminating be-
tween the two types of unnecessary corrections is
hard, we hypothesize that a comparison between
TER/BLEU(pe) and TER/BLEU(pe+ref) can be
used as a proxy to quantify those belonging to type
iii). In general, due to the possibility to match
more and longer n-grams in a multi-reference set-
ting, TER/BLEU(pe+ref) scores are expected to be
higher than TER/BLEU(pe) scores. However, if
our hypothesis holds true, visible differences in the
increase observed for the baseline and for the sys-
tems should indicate systems’ tendency to produce
acceptable over-corrections (type iii)). In particu-
lar, larger gains observed for the APE systems will
be associated to their over-correction tendency to-
wards potentially acceptable edits that should not
be penalized by automatic evaluation metrics.

As expected, Table 4 shows that, on English-
German data, multi-reference evaluation
against post edits and external references
(TER/BLEU(pe+ref)) yields better results
compared to single reference evaluation with
post-edits only (TER/BLEU(pe)). The variations
of the do-nothing baseline are -0.57 TER (from
16.84 to 16.27) and 2.1 BLEU (from 74.73 to
76.83) points. In contrast, systems’ scores vary by
-0.46 TER and +2.01 BLEU points on average.
In comparison with the larger variation observed
for the baseline, this indicates that, for most of the
submissions, the multi-reference evaluation does
not indicate a tendency to produce unnecessary
but acceptable corrections. On a positive note,
while last year this was true for all the systems,
this year four runs perform slightly better than

the baseline in terms of BLEU(pe+ref). Though
minimal, these differences suggest that a certain
amount of corrections made by the top systems
still represent acceptable modifications of the
original translations.

5 System/performance analysis

As a complement to global TER/BLEU scores,
also this year we performed a more fine-grained
analysis of the changes made by each system to
the test instances.

5.1 Macro indicators: modified, improved
and deteriorated sentences

Tables 6 and 7 show the number of modified, im-
proved and deteriorated sentences, respectively for
the English-German and the English-Russian sub-
tasks. It’s worth noting that, as in the previous
rounds and in both the settings, the number of sen-
tences modified by each system is higher than the
sum of the improved and the deteriorated ones.
This difference is represented by modified sen-
tences for which the corrections do not yield TER
variations. This grey area, for which quality im-
provement/degradation can not be automatically
assessed, contributes to motivate the human eval-
uation discussed in Section 6.

English-German subtask. As shown in table 6,
the amount of sentences modified by the partici-
pating systems varies considerably. With values
ranging from 4.01% to 39.1%, the average pro-
portion of modifications (23.53%) is lower com-
pared to last year (32.7%). Considering that about
25.2% (i.e. 257) of the test instances are to be con-
sidered as “perfect” (see Figure1), also this year
the reported numbers are, for most of the submis-
sions, far below the target percentage of modifi-
cations (74.8%). Overall, system’s aggressiveness
does not correlate with the final ranking: among
both the top ranked systems and those with lower
performance, large differences in the proportion of
modified sentences can be observed. Indeed, as
expected, what makes the difference is system’s
precision (i.e. the proportion of improved sen-
tences out of the total amount of modified test
items). Overall, the average precision is 45.92%,
which represents a significant increase from last
year’s value (34.3%). While in 2018 none of the
systems showed a precision higher than 50.0%,
this year seven runs are above this value. As a
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Systems Modified Improved Deteriorated
UNBABEL Primary 366 (35.78%) 187 (51.09%) 110 (30.05%)
POSTECH Primary 207 (20.23%) 127 (61.35%) 41 (19.81%)
POSTECH Contrastive (var2Ens8) 210 (20.53%) 125 (59.52%) 45 (21.43%)
USAAR DFKI Primary 301 (29.42%) 157 (52.16%) 83 (27.57%)
POSTECH Contrastive (top1Ens4) 213 (20.82%) 125 (58.69%) 47 (22.07%)
UNBABEL Contrastive (2) 400 (39.1%) 202 (50.50%) 121 (30.25%)
UNBABEL Contrastive (1) 393 (38.42%) 195 (49.62%) 117 (29.77%)
FBK Primary 200 (19.55%) 115 (57.50%) 50 (25.00%)
FBK Contrastive 363 (35.48%) 164 (45.18%) 131 (36.09%)
UDS Primary 96 (9.38%) 42 (43.75%) 36 (37.50%)
IC USFD Contrastive 41 (4.01%) 21 (51.22%) 16 (39.02%)
UDS Contrastive (Gaus) 125 (12.22%) 54 (43.20%) 51 (40.80%)
UDS Contrastive (Uni) 112 (10.95%) 49 (43.75%) 41 (36.61%)
IC USFD Primary 72 (7.04%) 29 (40.28%) 35 (48.61%)
ADAPT DCU Contrastive (SMT) 120 (11.73%) 29 (24.17%) 61 (50.83%)
ADAPT DCU Primary 368 (35.97%) 116 (31.52%) 169 (45.92%)
USAAR DFKI Contrastive 391 (38.22%) 135 (34.53%) 168 (42.97%)
ADAPT DCU Contrastive (LEN) 354 (34.60%) 101 (28.53%) 169 (47.74%)

Table 6: Number of test sentences modified, improved and deteriorated by each run submitted to the English-German subtask.

Systems Modified Improved Deteriorated
ADAPT DCU Contrastive 92 (8.99%) 17 (18.48%) 49 (53.26%)
ADAPT DCU Primary 245 (23.95%) 57 (23.27%) 130 (53.06%)
FBK Primary 147 (14.37%) 49 (33.33%) 67 (45.58%)
FBK Contrastive 26 (2.54%) 5 (19.23%) 18 (69.23%)

Table 7: Number of test sentences modified, improved and deteriorated by each run submitted to the English-Russian subtask.

consequence, the percentage of deteriorated sen-
tences out of the total amount of modified test
items shows a significant drop. On average, a
quality decrease is observed for 35.11% of the test
items, while last year the average was 47.85%.

English-Russian subtask. As shown in table 7,
also in this subtask the amount of sentences mod-
ified by the submitted systems varies considerably
and does not correlate with systems’ ranking. On
average, the proportion of modifications is 12.46%
(much less compared to the English-German sub-
task). With values ranging from 2.54% to 23.95%,
all the four runs are far from the expected value of
38.6% modifications (recall that 61.4% of the test
items are perfect translations). Systems’ precision
is also lower compared to the English-German
task. The average proportion of improved sen-
tences is 23.58%, while the deteriorated ones are
on average 55.28%, thus confirming the higher
difficulty of the English-Russian evaluation set-
ting.

Overall, the analysis confirms that correct-
ing high-quality translations still remains a hard

task, especially when dealing with higher-quality
English-Russian outputs. On one side, systems’
low precision is an evident limitation. On the other
side, one possible explanation is that the margins
of improvement to the input sentences are reduced
to types of errors (e.g. lexical choice) on which
APE systems are less reliable. The analysis pro-
posed in Section 5.2 aims to explore also this as-
pect.

5.2 Micro indicators: edit operations

In previous rounds of the APE task, the possi-
ble differences in the way systems corrected the
test set instances were analyzed by looking at
the distribution of the edit operations done by
each system (insertions, deletions, substitutions
and shifts). Such distribution was obtained by
computing the TER between the original MT out-
put and the output of each system taken as ref-
erence (only for the primary submissions). This
analysis has been performed also this year but it
turned out to be scarcely informative, as shown in
Figure 3.
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(a) (b)
Figure 3: System behaviour (primary submissions) for English-German (a) and English-Russian (b) – TER(MT, APE)

For both the subtasks, the differences in sys-
tem’s behaviour are indeed barely visible, mainly
due to the fact that, in most of the cases, the
submitted neural APE models implement sim-
ilar solutions (multi-source, Transformer-based
models trained with the same in-domain and ar-
tificial corpora). All the submitted runs are
characterized by a large number of substitu-
tions (on average, 53.6% for English-German
and 59.7% for English-Russian), followed by the
deletions (22.6% for English-German and 26.4%
for English-Russian), the insertions (respectively
16.3% and 9.4%) and finally the shifts (7.4% and
4.5%). These results are in line with previous find-
ings. Also in 2018, for instance, the high fluency
of neural translations induced the trained models
to perform few reordering operations leaving lex-
ical choice as a main direction of improvement,
as suggested by the larger amount of substitutions
performed by all the systems.

6 Human evaluation

In order to complement the automatic evaluation
of APE submissions, a manual evaluation of the
primary systems submitted (seven for English-
German, five for English-Russian) was conducted.
Similarly to the manual evaluation carried out for
last year APE shared task, it was based on the
direct assessment (DA) approach (Graham et al.,
2013; Graham et al., 2017). In this Section, we
present the evaluation procedure as well as the re-
sults obtained.

6.1 Evaluation procedure

The manual evaluation carried out this year in-
volved 32 native German speakers with full pro-
fessional proficiency in English. All annotators

were paid consultants, sourced by a linguistic ser-
vice provider company. Each evaluator had expe-
rience with the evaluation task through previous
work using the same evaluation platform in order
to be familiar with the user interface and its func-
tionalities. A screenshot of the evaluation inter-
face is presented in Figure 4.

We measure post-editing quality using source-
based direct assessment (src-DA), as implemented
in Appraise (Federmann, 2012). Scores are col-
lected as x ∈ [0, 100], focusing on adequacy (and
not fluency, which previous WMT evaluation cam-
paigns have found to be highly correlated with ad-
equacy direct assessment results).

The original DA approach (Graham et al., 2013;
Graham et al., 2014) is reference-based and, thus,
needs to be adapted for use in our paraphrase as-
sessment and translation scoring scenarios. Of
course, this makes translation evaluation more dif-
ficult, as we require bilingual annotators. Src-DA
has previously been used, e.g., in (Cettolo et al.,
2017; Bojar et al., 2018).

Direct assessment initializes mental context for
annotators by asking a priming question. The user
interface shows two sentences:

- the source (src-DA, reference otherwise); and

- the candidate output.

Annotators read the priming question and both
sentences and then assign a score x ∈ [0, 100] to
the candidate shown. The interpretation of this
score considers the context defined by the priming
question, effectively allowing us to use the same
annotation method to collect assessments wrt. the
different dimensions of quality as defined above.
Our priming questions are shown in Table 8.
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Figure 4: Screenshot of the direct assessment user interface.

Eval mode Priming question used

Post-editing How accurately does the above candidate text convey the original semantics of the source text?
adequacy Slider ranges from Not at all (left) to Perfectly (right).

Table 8: Priming question used for human evaluation of post-editing adequacy.

For adequacy, we ask annotators to assess se-
mantic similarity between source and candidate
text, labeled as “source text” and “candidate trans-
lation”, respectively. The annotation interface im-
plements a slider widget to encode perceived sim-
ilarity as a value x ∈ [0, 100]. Note that the ex-
act value is hidden from the human, and can only
be guessed based on the positioning of the slider.
Candidates are displayed in random order, pre-
venting bias.

For our human evaluation campaign, we
also include human post-editing output
(test.tok.pe) and unedited, neural ma-
chine translation output (test.tok.nmt).
We expect human post-editing to be of higher
quality than output from automatic post-editing
submissions, which in turn should outperform
unedited, neural machine translation output.

6.2 Human Evaluation results

English-German subtask. Score convergence
over time for English-German assessments is pre-
sented in Figure 5. This figure tracks average sys-
tem adequacy (as measured by Src-DA) over time,
as assessments come in from human annotators.
Note that we use the so-called alternate HIT lay-
out as named in the WMT18 findings paper, us-
ing an 88:12 split between actual assessments and
those reserved for quality control. All annotators
have proven reliable, passing qualification tests.

The results of Src-DA for the English-German
subtask are presented in Table 9. Our main find-
ings are as follows:

• Human post-editing outperforms all auot-
matic post-editing systems, the quality differ-
ence is significant;

• UNBABEL achieves best APE performance;

• USAAR DFKI comes in second;

• POSTECH comes in third;

• All but one APE systems outperform
unedited NMT output;

• Difference to the remaining APE system is
not statistically significant.

Human evaluation does only result in very
coarse result cluster. Thus, in order to order sub-
missions by their respective post-editing quality,
as perceived by human annotators, we also present
win-based results in Table 10.

English-Russian subtask. For 2019, we did not
run any human evaluation for the English-Russian
subtask, due to lack of participation. Instead, we
focused annotation efforts on English-German.
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Figure 5: Score convergence over time for English-German assessments.

# Systems Ave % Ave z

1 Human post-edit 90.39 0.154
2 UNBABEL 88.87 0.056

USAAR DFKI 88.45 0.027
POSTECH 88.11 -0.006
FBK 88.05 -0.014
ADAPT DCU 87.70 -0.037
UDS 87.54 -0.043
NMT output 87.35 -0.054
IC USFD 87.31 -0.059

Table 9: DA Human evaluation results for the English-
German subtask in terms of average raw DA (Ave %) and
average standardized scores (Ave z). Dashed lines between
systems indicate clusters according to Wilcoxon signed-rank
test at p-level p ≤ 0.05.

7 Conclusion

We presented the results from the fifth shared task
on Automatic Post-Editing. This year, we pro-
posed two subtasks in which the neural MT out-
put to be corrected was respectively generated by
an English-German system and by an English-
Russian system. Both the subtasks dealt with data
drawn from the information technology domain.
Seven teams participated in the English-German
task, with a total of 18 submitted runs, while
two teams participated in the English-Russian task
submitting two runs each. Except in one case

# Systems Wins Ave % Ave z

1 Human post-edit 8 90.39 0.154
2 UNBABEL 4 88.87 0.056
3 USAAR DFKI 3 88.45 0.027
4 POSTECH 1 88.11 -0.006
5 FBK 0 88.05 -0.014

ADAPT DCU 0 87.70 -0.037
UDS 0 87.54 -0.043
NMT output 0 87.35 -0.054
IC USFD 0 87.31 -0.059

Table 10: DA Human evaluation results for the English-
German subtask in terms of average raw DA (Ave %) and
average standardized scores (Ave z). Dashed lines between
systems indicate clusters according to number of wins.

(a contrastive run produced with a phrase-based
system), the submissions are based on neural ap-
proaches, which confirm to be the state-of-the-art
in APE. Most of them rely on multi-source mod-
els built upon the Transformer and trained by tak-
ing advantage of the synthetic corpora released as
additional training material.

For the English-German subtask the evaluation
was carried out on the same test set used last
year, whose human post-edits were not released
for the sake of future comparisons. The results on
these data, indicate further technology improve-
ments with respect to the 2018 round. This is
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shown by: i) the top result (-0.78 TER and +1.23
BLEU points over the baseline), which is signif-
icantly better than last year (-0.38 TER and +0.8
BLEU), and ii) the fact that four teams achieved
higher results than last year’s winning system.

The newly proposed English-Russian subtask
proved to be more challenging. None of the sub-
mitted runs was able to beat the baseline, whose
high TER (16.16) and BLEU (76.2) indicate a very
high quality of the initial translations. This is also
confirmed by the very skewed TER distribution of
the test set items. With more than 60.0% of the
translations with TER=0 (the highest value across
all the APE datasets released so far), the chance of
damaging a perfect MT output is extremely high.
Despite the high repetition rate of the English-
Russian data (also in this case, the highest across
all datasets), the difficulty of handling such a high
level of quality contributes to explain the lower re-
sults achieved by the two participating teams.

Overall, also this year the main open problem
remains to mitigate systems’ tendency towards
over-correction. In light of the steady progress
of NMT technology, handling increasingly better
translations calls for conservative and precise so-
lutions able to avoid the unnecessary modification
of correct MT output.
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