@inproceedings{tebbifakhr-etal-2019-effort,
title = "Effort-Aware Neural Automatic Post-Editing",
author = "Tebbifakhr, Amirhossein and
Negri, Matteo and
Turchi, Marco",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5416/",
doi = "10.18653/v1/W19-5416",
pages = "139--144",
abstract = "For this round of the WMT 2019 APE shared task, our submission focuses on addressing the {\textquotedblleft}over-correction{\textquotedblright} problem in APE. Over-correction occurs when the APE system tends to rephrase an already correct MT output, and the resulting sentence is penalized by a reference-based evaluation against human post-edits. Our intuition is that this problem can be prevented by informing the system about the predicted quality of the MT output or, in other terms, the expected amount of needed corrections. For this purpose, following the common approach in multilingual NMT, we prepend a special token to the beginning of both the source text and the MT output indicating the required amount of post-editing. Following the best submissions to the WMT 2018 APE shared task, our backbone architecture is based on multi-source Transformer to encode both the MT output and the corresponding source text. We participated both in the English-German and English-Russian subtasks. In the first subtask, our best submission improved the original MT output quality up to +0.98 BLEU and -0.47 TER. In the second subtask, where the higher quality of the MT output increases the risk of over-correction, none of our submitted runs was able to improve the MT output."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tebbifakhr-etal-2019-effort">
<titleInfo>
<title>Effort-Aware Neural Automatic Post-Editing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amirhossein</namePart>
<namePart type="family">Tebbifakhr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="given">Jimeno</namePart>
<namePart type="family">Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For this round of the WMT 2019 APE shared task, our submission focuses on addressing the “over-correction” problem in APE. Over-correction occurs when the APE system tends to rephrase an already correct MT output, and the resulting sentence is penalized by a reference-based evaluation against human post-edits. Our intuition is that this problem can be prevented by informing the system about the predicted quality of the MT output or, in other terms, the expected amount of needed corrections. For this purpose, following the common approach in multilingual NMT, we prepend a special token to the beginning of both the source text and the MT output indicating the required amount of post-editing. Following the best submissions to the WMT 2018 APE shared task, our backbone architecture is based on multi-source Transformer to encode both the MT output and the corresponding source text. We participated both in the English-German and English-Russian subtasks. In the first subtask, our best submission improved the original MT output quality up to +0.98 BLEU and -0.47 TER. In the second subtask, where the higher quality of the MT output increases the risk of over-correction, none of our submitted runs was able to improve the MT output.</abstract>
<identifier type="citekey">tebbifakhr-etal-2019-effort</identifier>
<identifier type="doi">10.18653/v1/W19-5416</identifier>
<location>
<url>https://aclanthology.org/W19-5416/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>139</start>
<end>144</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effort-Aware Neural Automatic Post-Editing
%A Tebbifakhr, Amirhossein
%A Negri, Matteo
%A Turchi, Marco
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Martins, André
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F tebbifakhr-etal-2019-effort
%X For this round of the WMT 2019 APE shared task, our submission focuses on addressing the “over-correction” problem in APE. Over-correction occurs when the APE system tends to rephrase an already correct MT output, and the resulting sentence is penalized by a reference-based evaluation against human post-edits. Our intuition is that this problem can be prevented by informing the system about the predicted quality of the MT output or, in other terms, the expected amount of needed corrections. For this purpose, following the common approach in multilingual NMT, we prepend a special token to the beginning of both the source text and the MT output indicating the required amount of post-editing. Following the best submissions to the WMT 2018 APE shared task, our backbone architecture is based on multi-source Transformer to encode both the MT output and the corresponding source text. We participated both in the English-German and English-Russian subtasks. In the first subtask, our best submission improved the original MT output quality up to +0.98 BLEU and -0.47 TER. In the second subtask, where the higher quality of the MT output increases the risk of over-correction, none of our submitted runs was able to improve the MT output.
%R 10.18653/v1/W19-5416
%U https://aclanthology.org/W19-5416/
%U https://doi.org/10.18653/v1/W19-5416
%P 139-144
Markdown (Informal)
[Effort-Aware Neural Automatic Post-Editing](https://aclanthology.org/W19-5416/) (Tebbifakhr et al., WMT 2019)
ACL
- Amirhossein Tebbifakhr, Matteo Negri, and Marco Turchi. 2019. Effort-Aware Neural Automatic Post-Editing. In Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 139–144, Florence, Italy. Association for Computational Linguistics.