Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation
Noor-e- Hira, Sadaf Abdul Rauf, Kiran Kiani, Ammara Zafar, Raheel Nawaz
Correct Metadata for
Abstract
Transfer Learning and Selective data training are two of the many approaches being extensively investigated to improve the quality of Neural Machine Translation systems. This paper presents a series of experiments by applying transfer learning and selective data training for participation in the Bio-medical shared task of WMT19. We have used Information Retrieval to selectively choose related sentences from out-of-domain data and used them as additional training data using transfer learning. We also report the effect of tokenization on translation model performance.- Anthology ID:
- W19-5419
- Volume:
- Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)
- Month:
- August
- Year:
- 2019
- Address:
- Florence, Italy
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 156–163
- Language:
- URL:
- https://aclanthology.org/W19-5419/
- DOI:
- 10.18653/v1/W19-5419
- Bibkey:
- Cite (ACL):
- Noor-e- Hira, Sadaf Abdul Rauf, Kiran Kiani, Ammara Zafar, and Raheel Nawaz. 2019. Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation. In Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 156–163, Florence, Italy. Association for Computational Linguistics.
- Cite (Informal):
- Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation (Hira et al., WMT 2019)
- Copy Citation:
- PDF:
- https://aclanthology.org/W19-5419.pdf
Export citation
@inproceedings{hira-etal-2019-exploring, title = "Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation", author = "Hira, Noor-e- and Abdul Rauf, Sadaf and Kiani, Kiran and Zafar, Ammara and Nawaz, Raheel", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)", month = aug, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W19-5419/", doi = "10.18653/v1/W19-5419", pages = "156--163", abstract = "Transfer Learning and Selective data training are two of the many approaches being extensively investigated to improve the quality of Neural Machine Translation systems. This paper presents a series of experiments by applying transfer learning and selective data training for participation in the Bio-medical shared task of WMT19. We have used Information Retrieval to selectively choose related sentences from out-of-domain data and used them as additional training data using transfer learning. We also report the effect of tokenization on translation model performance." }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="hira-etal-2019-exploring"> <titleInfo> <title>Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Noor-e-</namePart> <namePart type="family">Hira</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadaf</namePart> <namePart type="family">Abdul Rauf</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kiran</namePart> <namePart type="family">Kiani</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ammara</namePart> <namePart type="family">Zafar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Raheel</namePart> <namePart type="family">Nawaz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2019-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Florence, Italy</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Transfer Learning and Selective data training are two of the many approaches being extensively investigated to improve the quality of Neural Machine Translation systems. This paper presents a series of experiments by applying transfer learning and selective data training for participation in the Bio-medical shared task of WMT19. We have used Information Retrieval to selectively choose related sentences from out-of-domain data and used them as additional training data using transfer learning. We also report the effect of tokenization on translation model performance.</abstract> <identifier type="citekey">hira-etal-2019-exploring</identifier> <identifier type="doi">10.18653/v1/W19-5419</identifier> <location> <url>https://aclanthology.org/W19-5419/</url> </location> <part> <date>2019-08</date> <extent unit="page"> <start>156</start> <end>163</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation %A Hira, Noor-e- %A Abdul Rauf, Sadaf %A Kiani, Kiran %A Zafar, Ammara %A Nawaz, Raheel %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2) %D 2019 %8 August %I Association for Computational Linguistics %C Florence, Italy %F hira-etal-2019-exploring %X Transfer Learning and Selective data training are two of the many approaches being extensively investigated to improve the quality of Neural Machine Translation systems. This paper presents a series of experiments by applying transfer learning and selective data training for participation in the Bio-medical shared task of WMT19. We have used Information Retrieval to selectively choose related sentences from out-of-domain data and used them as additional training data using transfer learning. We also report the effect of tokenization on translation model performance. %R 10.18653/v1/W19-5419 %U https://aclanthology.org/W19-5419/ %U https://doi.org/10.18653/v1/W19-5419 %P 156-163
Markdown (Informal)
[Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation](https://aclanthology.org/W19-5419/) (Hira et al., WMT 2019)
- Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation (Hira et al., WMT 2019)
ACL
- Noor-e- Hira, Sadaf Abdul Rauf, Kiran Kiani, Ammara Zafar, and Raheel Nawaz. 2019. Exploring Transfer Learning and Domain Data Selection for the Biomedical Translation. In Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 156–163, Florence, Italy. Association for Computational Linguistics.