@inproceedings{shalyminov-etal-2019-shot,
title = "Few-Shot Dialogue Generation Without Annotated Data: A Transfer Learning Approach",
author = "Shalyminov, Igor and
Lee, Sungjin and
Eshghi, Arash and
Lemon, Oliver",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5904",
doi = "10.18653/v1/W19-5904",
pages = "32--39",
abstract = "Learning with minimal data is one of the key challenges in the development of practical, production-ready goal-oriented dialogue systems. In a real-world enterprise setting where dialogue systems are developed rapidly and are expected to work robustly for an ever-growing variety of domains, products, and scenarios, efficient learning from a limited number of examples becomes indispensable. In this paper, we introduce a technique to achieve state-of-the-art dialogue generation performance in a few-shot setup, without using any annotated data. We do this by leveraging background knowledge from a larger, more highly represented dialogue source {---} namely, the MetaLWOz dataset. We evaluate our model on the Stanford Multi-Domain Dialogue Dataset, consisting of human-human goal-oriented dialogues in in-car navigation, appointment scheduling, and weather information domains. We show that our few-shot approach achieves state-of-the art results on that dataset by consistently outperforming the previous best model in terms of BLEU and Entity F1 scores, while being more data-efficient than it by not requiring any data annotation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shalyminov-etal-2019-shot">
<titleInfo>
<title>Few-Shot Dialogue Generation Without Annotated Data: A Transfer Learning Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Igor</namePart>
<namePart type="family">Shalyminov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sungjin</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arash</namePart>
<namePart type="family">Eshghi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Lemon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Learning with minimal data is one of the key challenges in the development of practical, production-ready goal-oriented dialogue systems. In a real-world enterprise setting where dialogue systems are developed rapidly and are expected to work robustly for an ever-growing variety of domains, products, and scenarios, efficient learning from a limited number of examples becomes indispensable. In this paper, we introduce a technique to achieve state-of-the-art dialogue generation performance in a few-shot setup, without using any annotated data. We do this by leveraging background knowledge from a larger, more highly represented dialogue source — namely, the MetaLWOz dataset. We evaluate our model on the Stanford Multi-Domain Dialogue Dataset, consisting of human-human goal-oriented dialogues in in-car navigation, appointment scheduling, and weather information domains. We show that our few-shot approach achieves state-of-the art results on that dataset by consistently outperforming the previous best model in terms of BLEU and Entity F1 scores, while being more data-efficient than it by not requiring any data annotation.</abstract>
<identifier type="citekey">shalyminov-etal-2019-shot</identifier>
<identifier type="doi">10.18653/v1/W19-5904</identifier>
<location>
<url>https://aclanthology.org/W19-5904</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>32</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Few-Shot Dialogue Generation Without Annotated Data: A Transfer Learning Approach
%A Shalyminov, Igor
%A Lee, Sungjin
%A Eshghi, Arash
%A Lemon, Oliver
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F shalyminov-etal-2019-shot
%X Learning with minimal data is one of the key challenges in the development of practical, production-ready goal-oriented dialogue systems. In a real-world enterprise setting where dialogue systems are developed rapidly and are expected to work robustly for an ever-growing variety of domains, products, and scenarios, efficient learning from a limited number of examples becomes indispensable. In this paper, we introduce a technique to achieve state-of-the-art dialogue generation performance in a few-shot setup, without using any annotated data. We do this by leveraging background knowledge from a larger, more highly represented dialogue source — namely, the MetaLWOz dataset. We evaluate our model on the Stanford Multi-Domain Dialogue Dataset, consisting of human-human goal-oriented dialogues in in-car navigation, appointment scheduling, and weather information domains. We show that our few-shot approach achieves state-of-the art results on that dataset by consistently outperforming the previous best model in terms of BLEU and Entity F1 scores, while being more data-efficient than it by not requiring any data annotation.
%R 10.18653/v1/W19-5904
%U https://aclanthology.org/W19-5904
%U https://doi.org/10.18653/v1/W19-5904
%P 32-39
Markdown (Informal)
[Few-Shot Dialogue Generation Without Annotated Data: A Transfer Learning Approach](https://aclanthology.org/W19-5904) (Shalyminov et al., SIGDIAL 2019)
ACL