@inproceedings{paranjape-neubig-2019-contextualized,
title = "Contextualized Representations for Low-resource Utterance Tagging",
author = "Paranjape, Bhargavi and
Neubig, Graham",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5909",
doi = "10.18653/v1/W19-5909",
pages = "68--74",
abstract = "Utterance-level analysis of the speaker{'}s intentions and emotions is a core task in conversational understanding. Depending on the end objective of the conversational understanding task, different categorical dialog-act or affect labels are expertly designed to cover specific aspects of the speakers{'} intentions or emotions respectively. Accurately annotating with these labels requires a high level of human expertise, and thus applying this process to a large conversation corpus or new domains is prohibitively expensive. The resulting paucity of data limits the use of sophisticated neural models. In this paper, we tackle these limitations by performing unsupervised training of utterance representations from a large corpus of spontaneous dialogue data. Models initialized with these representations achieve competitive performance on utterance-level dialogue-act recognition and emotion classification, especially in low-resource settings encountered when analyzing conversations in new domains.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paranjape-neubig-2019-contextualized">
<titleInfo>
<title>Contextualized Representations for Low-resource Utterance Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhargavi</namePart>
<namePart type="family">Paranjape</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Utterance-level analysis of the speaker’s intentions and emotions is a core task in conversational understanding. Depending on the end objective of the conversational understanding task, different categorical dialog-act or affect labels are expertly designed to cover specific aspects of the speakers’ intentions or emotions respectively. Accurately annotating with these labels requires a high level of human expertise, and thus applying this process to a large conversation corpus or new domains is prohibitively expensive. The resulting paucity of data limits the use of sophisticated neural models. In this paper, we tackle these limitations by performing unsupervised training of utterance representations from a large corpus of spontaneous dialogue data. Models initialized with these representations achieve competitive performance on utterance-level dialogue-act recognition and emotion classification, especially in low-resource settings encountered when analyzing conversations in new domains.</abstract>
<identifier type="citekey">paranjape-neubig-2019-contextualized</identifier>
<identifier type="doi">10.18653/v1/W19-5909</identifier>
<location>
<url>https://aclanthology.org/W19-5909</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>68</start>
<end>74</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contextualized Representations for Low-resource Utterance Tagging
%A Paranjape, Bhargavi
%A Neubig, Graham
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F paranjape-neubig-2019-contextualized
%X Utterance-level analysis of the speaker’s intentions and emotions is a core task in conversational understanding. Depending on the end objective of the conversational understanding task, different categorical dialog-act or affect labels are expertly designed to cover specific aspects of the speakers’ intentions or emotions respectively. Accurately annotating with these labels requires a high level of human expertise, and thus applying this process to a large conversation corpus or new domains is prohibitively expensive. The resulting paucity of data limits the use of sophisticated neural models. In this paper, we tackle these limitations by performing unsupervised training of utterance representations from a large corpus of spontaneous dialogue data. Models initialized with these representations achieve competitive performance on utterance-level dialogue-act recognition and emotion classification, especially in low-resource settings encountered when analyzing conversations in new domains.
%R 10.18653/v1/W19-5909
%U https://aclanthology.org/W19-5909
%U https://doi.org/10.18653/v1/W19-5909
%P 68-74
Markdown (Informal)
[Contextualized Representations for Low-resource Utterance Tagging](https://aclanthology.org/W19-5909) (Paranjape & Neubig, SIGDIAL 2019)
ACL