@inproceedings{trinh-etal-2019-capturing,
title = "Capturing Dialogue State Variable Dependencies with an Energy-based Neural Dialogue State Tracker",
author = "Trinh, Anh Duong and
Ross, Robert J. and
Kelleher, John D.",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5910/",
doi = "10.18653/v1/W19-5910",
pages = "75--84",
abstract = "Dialogue state tracking requires the population and maintenance of a multi-slot frame representation of the dialogue state. Frequently, dialogue state tracking systems assume independence between slot values within a frame. In this paper we argue that treating the prediction of each slot value as an independent prediction task may ignore important associations between the slot values, and, consequently, we argue that treating dialogue state tracking as a structured prediction problem can help to improve dialogue state tracking performance. To support this argument, the research presented in this paper is structured into three stages: (i) analyzing variable dependencies in dialogue data; (ii) applying an energy-based methodology to model dialogue state tracking as a structured prediction task; and (iii) evaluating the impact of inter-slot relationships on model performance. Overall we demonstrate that modelling the associations between target slots with an energy-based formalism improves dialogue state tracking performance in a number of ways."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="trinh-etal-2019-capturing">
<titleInfo>
<title>Capturing Dialogue State Variable Dependencies with an Energy-based Neural Dialogue State Tracker</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anh</namePart>
<namePart type="given">Duong</namePart>
<namePart type="family">Trinh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Ross</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Kelleher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue state tracking requires the population and maintenance of a multi-slot frame representation of the dialogue state. Frequently, dialogue state tracking systems assume independence between slot values within a frame. In this paper we argue that treating the prediction of each slot value as an independent prediction task may ignore important associations between the slot values, and, consequently, we argue that treating dialogue state tracking as a structured prediction problem can help to improve dialogue state tracking performance. To support this argument, the research presented in this paper is structured into three stages: (i) analyzing variable dependencies in dialogue data; (ii) applying an energy-based methodology to model dialogue state tracking as a structured prediction task; and (iii) evaluating the impact of inter-slot relationships on model performance. Overall we demonstrate that modelling the associations between target slots with an energy-based formalism improves dialogue state tracking performance in a number of ways.</abstract>
<identifier type="citekey">trinh-etal-2019-capturing</identifier>
<identifier type="doi">10.18653/v1/W19-5910</identifier>
<location>
<url>https://aclanthology.org/W19-5910/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>75</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Capturing Dialogue State Variable Dependencies with an Energy-based Neural Dialogue State Tracker
%A Trinh, Anh Duong
%A Ross, Robert J.
%A Kelleher, John D.
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F trinh-etal-2019-capturing
%X Dialogue state tracking requires the population and maintenance of a multi-slot frame representation of the dialogue state. Frequently, dialogue state tracking systems assume independence between slot values within a frame. In this paper we argue that treating the prediction of each slot value as an independent prediction task may ignore important associations between the slot values, and, consequently, we argue that treating dialogue state tracking as a structured prediction problem can help to improve dialogue state tracking performance. To support this argument, the research presented in this paper is structured into three stages: (i) analyzing variable dependencies in dialogue data; (ii) applying an energy-based methodology to model dialogue state tracking as a structured prediction task; and (iii) evaluating the impact of inter-slot relationships on model performance. Overall we demonstrate that modelling the associations between target slots with an energy-based formalism improves dialogue state tracking performance in a number of ways.
%R 10.18653/v1/W19-5910
%U https://aclanthology.org/W19-5910/
%U https://doi.org/10.18653/v1/W19-5910
%P 75-84
Markdown (Informal)
[Capturing Dialogue State Variable Dependencies with an Energy-based Neural Dialogue State Tracker](https://aclanthology.org/W19-5910/) (Trinh et al., SIGDIAL 2019)
ACL