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Abstract

We present the first complete attempt at con-
currently training conversational agents that
communicate only via self-generated lan-
guage. Using DSTC2 as seed data, we trained
natural language understanding (NLU) and
generation (NLG) networks for each agent and
let the agents interact online. We model the
interaction as a stochastic collaborative game
where each agent (player) has a role (“assis-
tant”, “tourist”, “eater”, etc.) and their own
objectives, and can only interact via natural
language they generate. Each agent, therefore,
needs to learn to operate optimally in an envi-
ronment with multiple sources of uncertainty
(its own NLU and NLG, the other agent’s
NLU, Policy, and NLG). In our evaluation,
we show that the stochastic-game agents out-
perform deep learning based supervised base-
lines.

1 Introduction

Machine learning for conversational agents has
seen great advances (e.g. Tur and Mori, 2011; Gao
et al., 2019; Singh et al., 1999; Young et al., 2013;
Oh and Rudnicky, 2000; Zen et al., 2009; Re-
iter and Dale, 2000; Rieser and Lemon, 2010),
especially when adopting deep learning models
(Deng and Liu, 2018; Mesnil et al., 2015; Wen
et al., 2015, 2017; Su et al., 2017; Papangelis
et al., 2018; Liu and Lane, 2018b; Li et al., 2017;
Williams et al., 2017; Liu and Lane, 2018a). Most
of these works, however, suffer from the lack of
data availability as it is very challenging to design
sample-efficient learning algorithms for problems
as complex as training agents capable of meaning-
ful conversations. Among other simplifications,
this results in treating the interaction as a single-
agent learning problem, i.e. assuming that from
the conversational agent’s perspective the world
may be complex but is stationary. In this work,

we model conversational interaction as a stochas-
tic game (e.g. Bowling and Veloso, 2000) and train
two conversational agents, each with a different
role, which learn by interacting with each other
via natural language. We first train Language Un-
derstanding (NLU) and Generation (NLG) neural
networks for each agent and then use multi-agent
reinforcement learning, namely the Win or Lose
Fast Policy Hill Climbing (WoLF-PHC) algorithm
(Bowling and Veloso, 2001), to learn optimal di-
alogue policies in the presence of high levels of
uncertainty that originate from each agent’s sta-
tistical NLU and NLG, and the other agent’s er-
ratic behaviour (as the other agent is learning at
the same time). While not completely alleviating
the need for seed data needed to train the NLU
and NLG components, the multi-agent setup has
the effect of augmenting them, allowing us to gen-
erate dialogues and behaviours not present in the
original data.

Employing a user simulator is an established
method for dialogue policy learning (Schatzmann
et al., 2007, among others) and end-to-end dia-
logue training (Asri et al., 2016; Liu and Lane,
2018b). Training two conversational agents con-
currently has been proposed by Georgila et al.
(2014); training them via natural language com-
munication was partially realized by Liu and Lane
(2017), as they train agents that receive text in-
put but generate dialogue acts. However, to the
best of our knowledge, this is the first study that
allows fully-trained agents to communicate only
in natural language, and does not allow any all-
seeing critic / discriminator. Inspired by Hakkani-
Tür (2018), each agent learns in a decentralized
setting, only observing the other agent’s language
output and a reward signal. This allows new,
untrained agents to directly interact with trained
agents and learn without the need for adjusting pa-
rameters that can affect the already trained agents.
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Figure 1: Information flow between two agents on a successful example (shown in red, starting from the Informa-
tion Seeker’s policy). Where needed, slot values are populated from the tracked dialogue state.

The architecture of each agent is mirrored as
shown in Figure 1, so the effort of adding agents
with new roles is minimal. As seed data, we
use data from DSTC2 (Henderson et al., 2014),
which concerns dialogues between humans ask-
ing for restaurant information and a machine pro-
viding such information. Our contributions are:
1) we propose a method for training fully text-
to-text conversational agents from mutually gen-
erated data; and 2) we show how agents trained
by multi-agent reinforcement learning and mini-
mal seed human-machine data can produce high
quality dialogues as compared to single-agent pol-
icy models in an empirical evaluation.

1.1 Related Work

Collecting and annotating a big corpus requires
significant effort and has the additional challenge
that agents trained in a supervised manner with a
given corpus cannot easily generalize to unseen /
out of domain input. Building a good user simula-
tor to train against can be challenging as well, even
equivalent to building a dialogue system in some
cases. Directly learning from humans leads to
policies of higher quality, but requires thousands
of dialogues even for small domains (Gasic et al.,
2013). Shah et al. (2018) combine such resources
to train dialogue policies. Recently, model-based
RL approaches to dialogue policy learning are be-
ing revisited (Wu et al., 2018); however, such
methods still assume a stationary environment.

Georgila et al. (2014) concurrently learn two
negotiator agents’ dialogue policies in a set-

ting where they negotiate allocation of resources.
However, their agents do not interact via language,
but rather via dialogue acts. They use PHC and
WoLF-PHC (Bowling and Veloso, 2001) to train
their agents, who use two types of dialogue acts:
accept and offer, each of which takes two numer-
ical arguments. Lewis et al. (2017) train agents
on a similar task, but their agents are modelled as
end-to-end networks that learn directly from text.
However, the authors train their negotiator agent
on supervised data and against a fixed supervised
agent. Earlier works include English and Heeman
(2005), the first to train policies for two conversa-
tional agents, but with single-agent RL, and Chan-
dramohan et al. (2014) who applied co-adaptation
on single-agent RL, using Inverse RL to infer re-
ward functions from data.

Liu and Lane (2017) train two agents on DSTC2
data, taking text as input and producing dialogue
acts that are then fed to template-based language
generators. They pre-train their models using the
data in a supervised manner and apply reinforce-
ment learning on top. In our setup, information
providers and seekers are modeled as active play-
ers in a non-stationary environment who interact
with each other via language they generate, us-
ing statistical language generators. Each agent has
their own reward as the objectives are not iden-
tical, and their dialogue manager uses a method
designed for non-stationary environments. While
our setup still needs seed data to ensure linguistic
consistency and variability, it augments this data
and can train high quality conversational agents.
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Goal Constr(pricerange=cheap), Constr(area=north), Req(addr), Req(phone)
Agent Role Input / Output

Example of DM error (Seeker’s policy is also learning):
Prov. NLG what part of town do you have in mind?

Seeker NLU request(area)
Seeker DM act inform food

Example of NLG error:
Seeker DM act request phone
Seeker NLG what is the phone
Prov. NLU request(phone)
Prov. DM act inform phone
Prov. NLG the post code is c.b 4, 1 u.y .

Seeker NLU inform(postcode = c.b 4, 1 u.y)
Example of NLU error:

Provider NLG the phone number is 01223 356555
Seeker NLU inform(phone=01223)

Table 1: A failed dialogue between two conversational agents during training. Uncertainty originating from NLU
and NLG components on top of the erratic behaviour of each agent’s policy (as they learn concurrently) can have
a big impact on the quality of the learned dialogue policies.

Other than the works mentioned above, many
approaches have been proposed to train modular
or end-to-end dialogue systems. To the best of our
knowledge, however, none of them concurrently
trains two conversational agents.

2 System Overview

Figure 1 shows the general architecture and in-
formation flow of our system, composed of two
agents who communicate via written language.
Our system operates in the well-known DSTC2
domain (Henderson et al., 2014) which concerns
information about restaurants in Cambridge; how-
ever, our multi-agent system supports any slot-
filling / information-seeking domain. The Lan-
guage Understanding and Generation components
are trained offline as described in the follow-
ing sections, while the dialogue policies of the
agents are trained online during their interac-
tion. Given that our language generation compo-
nent is model-based rather than retrieval-based or
template-based, we believe that the quality of the
generated language and dialogues is encouraging
(see appendix for some example dialogues).

2.1 Language Understanding
The task of Natural Language Understanding
(NLU) consists of mapping a free-form sentence
to a meaning representation, usually in the form
of a semantic frame. The frame consists of
an intent and a set of slots with associated val-

ues. For instance, the semantic frame of the sen-
tence “Book me an Italian restaurant in the south
part of the city” can be mapped to the frame
“book restaurant (food: Italian, area: south)”
where book restaurant is the intent and food and
area are the slots.

In recent years, deep learning approaches have
been adopted for NLU, performing intent classi-
fication and slot tagging both independently (Tür
et al., 2012; Lee and Dernoncourt, 2016; Xu and
Sarikaya, 2013; Mesnil et al., 2015; Kurata et al.,
2016; Huang et al., 2015) and jointly (Zhang and
Wang, 2016; Rojas-Barahona et al., 2016). In
Hakkani-Tür et al. (2016), decoders tag each word
in the input sentence with a different slot name
and concatenate the intent as a tag to the end-of-
sentence token, while in Liu and Lane (2016) the
encoder is shared, but the two tasks have separate
decoders. In most cases, intent detection is treated
as a classification problem and the slot name tags
for all words are uniquely assigned to the intent
detected in the sentence.

In our case, as we decided to use the same NLU
model architecture for both agent roles, we could
not rely on multi-class classification. In particu-
lar, system outputs in DSTC2 often contain mul-
tiple acts, so an “information seeker” NLU model
has to learn to identify which intents are present
in the system utterance as well as to assign slot
values to each identified intent. An example of
this need is evident in the sentence “There are
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no Italian restaurants in the south part of the
city, but one is available in the west side” which
can be mapped to “{deny(food: Italian, area:
south), inform(area: west)}”. In order to tackle
those scenarios, we designed our decoder to pre-
dict multiple intents (casting the task as a multi-
label classification problem) where each intent is
a class and, for the “request” intent, the pair of
“request” and all requestable slots are additional
classes. This is necessary as the slot values of
the request intent are names of slots (e.g. re-
quest(food)), and they may not be mentioned ex-
plicitly in the sentences. Moreover, to account for
the multiple intents in the set tagger decoder, we
augmented the number of possible tags for each
word in the sentence concatenating the name of
the intent they are associated with. In the previ-
ous example, for instance, the word “south” is as-
signed a “deny area” tag, while the word “west”
is assigned an “inform area” tag, so the name of
the intent in the tag identifies which of the multiple
intents each slot is assigned to. This increases the
number of tags, but allows an unequivocal assign-
ment of the slot values to the intents they belong
to.

The whole model, which is composed of a con-
volutional encoder and the two decoders (one in-
tent multi-label classifier and a slot tagger), is
trained end-to-end in a multi-task fashion, with
both multi-label intent classification and slot tag-
ging tasks being optimized at the same time. The
output set of semantic frames from the NLU is
then aggregated over time and passed on to the di-
alogue policy.

Evaluating NLU Quality Table 2 summarizes
the performance (F1 scores) of the trained models,
with respect to intent, frame, and slot IOB tags,
calculated on the DSTC2 test set. The F1 measure
is used instead of accuracy due to the multiple in-
tents, acts and slots in our problem formulation.

Role Intent F1 Slots F1 Frame F1
Provider 0.929 0.899 0.927

Seeker 0.986 0.995 0.983

Table 2: F1 scores for each agent’s NLU model.

2.2 Dialogue Policy Learning
As already discussed, in this work we train
two agents: one seeking restaurant informa-
tion (“seeker”) and one providing information
(“provider”). Each agent’s dialogue policy re-

ceives the tracked dialogue state and outputs a di-
alogue act. While both agents have the same set
of dialogue acts to choose from, they have dif-
ferent arguments to use for these acts (Hender-
son et al., 2014). Each agent also has a differ-
ent dialogue state, representing its perception of
the world. The seeker’s state models its prefer-
ences (goal) and what information the provider
has given, while the provider’s state models con-
straints expressed or information requested by the
seeker, as well as attributes of the current item
in focus (retrieved from a database) and metrics
related to current database results, such as num-
ber of items retrieved, slot value entropies, etc.
The reward signal is slightly different for each
agent, even though the task is collaborative. It
assigns a positive value on successful task com-
pletion (restaurant provided matches the seeker’s
goal, and all seeker’s requests are answered), a
negative value otherwise, and a small negative
value for each dialogue turn to favor shorter in-
teractions. However, a seeker is penalised for
each request in the goal that is not expressed, and
a provider is penalised for each request that is
unanswered. To train good dialogue policies in
this noisy multi-agent environment, we opted for
WoLF-PHC as a proof of concept and leave in-
vestigation of general-sum and other methods that
scale better on richer domains for future work.
The dialogue policies that we train operate on the
full DSTC2 act and a subset of the slot space.
Specifically, not all dialogue acts have slot argu-
ments and we do not allow multiple arguments per
act or multiple acts per turn, so the size of our ac-
tion space is 23. In the input, all policies receive
the output of the NLU aggregated over the past di-
alogue turns (i.e. keeping track of slots mentioned
in the past) with - as mentioned above - the state
of the seeker including its own goal, and the state
of the provider including current database result
metrics which are fetched through SQL queries
formed using the slot-value pairs in the provider’s
state.

2.2.1 WoLF-PHC
A stochastic game can be thought of as a Markov
Decision Process extended to multiple agents. It
is defined as a tuple (n, S,A1..n, T,R1..n), where
n is the number of agents, S is the set of states,
Ai is the set of actions available to agent i, T :
S ×A× S → [0, 1] is the transition function, and
Ri : S ×A→ < is the reward function of agent i.
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WoLF-PHC (Bowling and Veloso, 2001) is a
PHC algorithm (simple extension to Q-Learning
for mixed policies) with variable learning rate and
the principle according to which the agent should
learn quickly (i.e. with a higher learning rate)
when losing and slowly when winning. Briefly,
Q is updated as in Q-Learning and an estimate of
the average policy is maintained:
π̃(s, a′) ← π̃(s, a′) + 1

C(s)(π(s, a
′) − π̃(s, a′)),

whereC(s) is the number of times state s has been
visited. The policy then is updated as follows:

π(s, a)← π(s, a)+

{
δ a = amaxa′Q(s, a′)
−δ
|Ai|−1 otherwise

δ =

{
δw

∑
a π(s, a)Q(s, a) >

∑
a π̃(s, a)Q(s, a)

δl otherwise

where δw and δl are learning rates.

2.3 Language Generation

Natural language generation (NLG) is a critical
module in dialogue systems. It operates in the later
phase of the dialogue system, consumes the mean-
ing representation of the intended output provided
by the dialogue manager, and converts it to a nat-
ural language utterance.

Previous research has approached the NLG
problem in various ways (e.g., Langkilde and
Knight, 1998; Walker et al., 2002; Oh and Rud-
nicky, 2000). One common approach is rule-
based / template-based generation, which pro-
duces utterances from handcrafted rules or tem-
plates where slot variables are filled with values
from the meaning representation provided by the
dialogue manager. This approach has been widely
adopted in both industrial and research systems.
Although it guarantees high-quality output, it is
time-consuming to write templates especially for
all possible meaning representations and the gen-
erated sentences quickly become repetitive for the
users. Moreover, scalability and maintenance of
these templates become concerns as we expand the
system to deal with more domains or scenarios.

More recently, deep neural networks have been
widely adopted in natural language generation be-
cause of their effectiveness. Among all types
of deep learning architectures, the sequence-
to-sequence approach (seq2seq) has been most

widely and successfully adopted for language gen-
eration in several tasks as machine translation
(e.g. Sutskever et al., 2014), question answering
(e.g. Yin et al., 2016), text summarization (e.g.
Chopra et al., 2016), and conversational models
(e.g. Shang et al., 2015; Serban et al., 2016).

Our NLG model is inspired by recent state of
the art seq2seq models such as Sutskever et al.
(2014) and Wen et al. (2015), that transform one
sequence of words to another. Our seq2seq model
was constructed to take a meaning representation
string as input and generate the corresponding
natural language template as output. Both input
and output were delexicalized with slot values re-
placed by tags, and values are filled in after the
template is generated. An example of input and
output of the system NLG is shown below:
Input: act inform <food> act inform

<pricerange> act offer <name>

Output: <name> is a great restaurant

serving <food> food and it is in the

<pricerange> price range

Specifically, we implemented our Encoder-
Decoder model with Long Short-Term Memory
(LSTM) recurrent networks. We employed an at-
tention mechanism (Bahdanau et al., 2015) to em-
phasize relevant parts of the input sequence at each
step when generating the output sequence. We
further improved the model by encoding the con-
versation history as a context vector and concate-
nating it with the encoded input for output gen-
eration. We observed that context not only in-
creases the model performance, but also helps to
produce output with more variation, which has
been considered one of the important factors of a
good NLG model (Stent et al., 2005). Both agents’
NLG models were built in the same way using the
provider- or seeker-side data.

Evaluating NLG Quality BLEU score (Pap-
ineni et al., 2002) has been one of the most com-
monly used metrics for NLG evaluation. Since
it is agreed that the existing automatic evaluation
metrics for NLG have limitations (Belz and Reiter,
2006), we introduced a modified version of BLEU
which attempts to compensate the gap of the cur-
rent BLEU metric. BLEU, ranging from 0 to 1, is
a precision metric that quantifies n-gram overlaps
between a generated text and the ground truth text.
However, we observed that in the DSTC2 data a
meaning representation can map to different tem-
plates as the example shown below:
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MR: act inform <pricerange> act offer

<name>

T1: the price range at <name> is

<pricerange>

T2: <name> is in the <pricerange> price

range

Thus, to compute BLEU of a model-generated
template, instead of only comparing it against its
corresponding ground truth template, we calcu-
lated its BLEU scores with all the possible tem-
plates that have the same input meaning repre-
sentation in the DSTC2 data, and the maximum
BLEU score among them is the final BLEU of
this generated template. By doing so, the aver-
age BLEU scores of the information provider and
seeker NLG models on the test set are 0.8625 and
0.5293, respectively. Note that it is not surprising
that the seeker model does not perform as well as
the provider model because the seeker-side data
has many more unique meaning representations
and natural language templates, which make the
task of building a good seeker model harder.

3 Evaluation

The Plato Research Dialogue System1 was used
to implement, train, and evaluate the agents. To
assess the quality of the dialogues our agents are
capable of, we compare dialogue success rates, av-
erage cumulative rewards, and average dialogue
turns along two dimensions: a) access to ground
truth labels during training or not; b) stationary or
non-stationary environment during training. We
therefore train four kinds of conversational agents
for each role (eight in total) as shown in Table
3. Due to the nature of our setup, algorithms de-
signed for stationary environments (e.g. DQN) are
not considered.

Stat. Env. Non-Stat. Env.
Dial. Acts SuperDAct WoLF-Dact

Text Supervised WoLF-PHC

Table 3: The four conditions under which our conver-
sational agents are trained.

Specifically, the SuperDAct agents are mod-
elled as 3-layer Feed Forward Networks (FFN),
trained on DSTC2 data using the provided di-
alogue act annotations. The Supervised agents
(also 3-layer FFN) are trained on DSTC2 data but

1The source code for the full dialogue system can be
found here https://github.com/uber-research/
plato-research-dialogue-system

each agent’s policy uses the output of its respec-
tive NLU: the provider (dialogue system in the
dataset) generates its utterance using its trained
NLG with the dialogue acts found in the data as
input; the seeker (human caller in the dataset) then
uses the provider’s utterance as input to its NLU
whose output is then fed to its policy; and the
same approach is used for the provider’s side. The
WoLF-DAct agents are trained concurrently (i.e.
in a non-stationary environment) but interacting
via dialogue acts, while the WoLF-PHC agents are
trained concurrently and interacting via generated
language, as show in in Figure 1. All of these
agents are then evaluated on the full language to
language setup 2. Apart from the above, we trained
conversational agents using deep policy gradient
algorithms. Their performance could not match
the WoLF-PHC or the supervised agents, however,
even after alternating the policy gradient agents’
training to account for non-stationarity. This is
not unexpected, of course, since those algorithms
are designed to learn in a stationary environment.
These results therefore are not reported here.

In our evaluation, a dialogue is considered suc-
cessful if the information seeker’s goal is met
by the provider, following the standard definition
used for this domain (Su et al., 2017, e.g.). Un-
der this definition, a provider must offer an item
that matches the seeker’s constraints and must an-
swer all requests made by the seeker. However,
as seen in Table 6, even when the dialogue man-
ager’s output is correct, it can be realized by NLG
or understood by NLU erroneously. While none of
the models (NLU, DM, NLG) directly optimises
this objective, it is a good proxy of overall sys-
tem performance and allows for direct comparison
with prior work. As a reward signal for reinforce-
ment learning we use the standard reward function
found in the literature (Gasic et al., 2013; Su et al.,
2017, e.g.), tweaked to fit each agent’s perception
as described in section 2.2.

Figure 2 shows learning curves with respect to
the metrics we use for all conversational agents,
where each kind of agent was evaluated against
its counterpart (e.g. Supervised seeker against Su-
pervised provider) on the environment they were
trained on. Table 4 shows the main results of

2The SuperDAct and WoLF-DAct agents achieve 81% and
95% dialogue success rates respectively when evaluated on
a dialogue act to dialogue act setup (i.e. without LU/LG)
against an agenda-based simulated Seeker. When evaluated
against each other (Fig. 2) the performance naturally drops.

https://github.com/uber-research/plato-research-dialogue-system
https://github.com/uber-research/plato-research-dialogue-system
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Average Dialogue Success
SuperDAct Supervised WoLF-DAct WoLF-PHC

44.23% 46.30% 52.56% 66.30%
Average Cumulative Rewards

SuperDAct Supervised WoLF-DAct WoLF-PHC
4.42 6.68 7.84 10.93

Average Dialogue Turns
SuperDAct Supervised WoLF-DAct WoLF-PHC

10.89 8.65 9.81 9.57

Table 4: Average dialogue success, reward, and number of turns on the agents evaluated, over 3 training/evaluation
cycles with goals sampled from the test set of DSTC2. Regardless of training condition, all agents were evaluated
in the language to language setting. All differences between SuperDAct - WoLF-DAct, and Supervised - WoLF-
PHC are significant with p < 0.02.

our evaluation in the language to language set-
ting, where each cell represents the average of
3 train/evaluation cycles of policies trained un-
der the respective conditions for 20,000 dialogues
(200 epochs for the supervised agents) and eval-
uated for 1,000 dialogues. We can see that the
WoLF-PHC agents outperform the other condi-
tions in almost every metric, most likely because
they model the conversation as a stochastic game
and not as a single-agent problem. Comparing
Figure 2 with Table 4 we can see that the agents
trained on dialogue acts cannot generalise to the
language to language setting, even when paired
with NLU and NLG models that show strong per-
formance (see previous section). On a similar
setup (joint NLU and DM but without statisti-
cal NLG), Liu and Lane (2017) report 35.3% di-
alogue success rate for their supervised baseline
and 64.7% for reinforcement learning on top of
pre-trained supervised agents.

We attribute the low performance of the super-
vised policies to a lack of data and context in
the DSTC2 dataset. We believe that in the pres-
ence of errors from our statistical NLU and NLG,
there just are not enough dialogues or information
within each dialogue for the supervised policies to
learn to associate states with optimal actions. In
particular, if one of the NLGs or NLUs (for either
agent) makes a mistake, this affects the dialogue
state tracking and subsequently the database re-
trieval, resulting in a state that may not actually be
in the dataset. In the presence of this uncertainty
we found that seeker and provider do not prop-
erly learn how to make requests and address them,
respectively and this is the most frequent reason
for dialogue task failure in this condition. This is

partly due to the fact that in DSTC2 the provider’s
side responds to requests with an offer and an
inform, for example a response to a request for
phone number would be: offer(name=kymmoy),
inform(phone=01223 311911) which may be con-
fusing both models. In light of this, we trained
a supervised policy model able to output mul-
tiple actions at each dialogue turn. However,
this makes the learning problem even harder and
we found that in this case such models perform
poorly. Overall the two supervised approaches ap-
pear to perform similarly on objective dialogue
task success but the Supervised agents who have
seen uncertainty during the training seem to per-
form better in terms of rewards achieved and num-
ber of dialogue turns.

Upon pairing different combinations of the
eight agents we trained, we observe that agents
who are able to better model the seeker’s be-
haviour perform best in the joint task. In our case,
WoLF-trained agents are able to better model the
seeker’s behaviour, which partially explains the
higher success rates. However, we note that the
WoLF-DAct agents do not generalise very well to
the much harder language to language environ-
ment. Another general trend that we observe is
that the WoLF-trained agents seem to take longer
number of turns but lead to higher rewards and
success rates likely because they persist for more
turns before giving up.

It is also worth noting that while we report an
objective measure of dialogue success (i.e. if both
agents achieved the goal), from each agent’s per-
spective what is success may be different. For ex-
ample, if a seeker does not inform about all con-
straints in the goal but provider respects all con-
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Figure 2: Learning curves of the dialogue policies of
our conversational agents, each evaluated on the envi-
ronment it is trained on (see Table 3). Note that the
agents are evaluated against each other, not against ra-
tional simulators or data.

straints that the provider does mention then the di-
alogue is successful from the provider’s perspec-
tive but failed from the seeker’s perspective. On
the other hand, if the seeker provides all con-
straints and requests but the provider either ig-
nores some constraints, says it cannot help, or
does not address some requests then the dialogue
is failed from the provider’s perspective but suc-
cessful from the seeker’s perspective. To test
whether optimizing the dialogue policies directly
against these subjective measures of task success
would lead to better dialogue policies, we per-
formed similar experiments as the ones whose re-
sults are reported in Table 4. However, we found
that the overall performance was not as good be-
cause it would lead to behaviours in which the

agents would not help each other to achieve the
objective goal (e.g. the provider would not make
many requests, or the seeker would not repeat in-
forms upon wrong offers).

4 Conclusion

We presented the first complete attempt at con-
currently training conversational agents that com-
municate only via self-generated language. Using
DSTC2 as seed data, we trained NLU and NLG
networks for each agent and let the agents inter-
act and learn online optimal dialogue policies de-
pending on their role (seeker or provider). Future
directions include investigating joint optimization
of the modules and training the agents online using
deep multi-agent RL (e.g. (Foerster et al., 2018))
as well as evaluating our agents on harder envi-
ronments (e.g. TextWorld (Côté et al., 2018)) and
against human players. A natural extension is to
train a multi-tasking provider agent that can learn
to serve various kinds of seeker agents.
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Seeker goal Constr(food=italian), Constr(pricerange=cheap), Req(addr), Req(phone)
Provider hello , welcome to the cambridge restaurant System?

you can ask for restaurants by area , price range or food type .
Seeker cheap restaurant

Provider what part of town do you have in mind?
Seeker italian food

Provider pizza hut city centre is a nice restaurant in the centre of town serving italian food
Seeker phone number

Provider the phone number is 01223 323737 .
Seeker address

Provider sure , it is on regent street city centre
Seeker (no output)

Provider what part of town do you have in mind?
Seeker good bye

Provider good bye

Table 5: A good example dialogue.

Seeker goal Constr(food=african), Constr(pricerange=expensive), Req(addr)
Provider hello , welcome to the cambridge restaurant System? how may i help you?

Seeker expensive restaurant
Provider what part of town do you have in mind?

Seeker african food
Provider bedouin is an expensive restaurant in the centre of town serving african food

Seeker i do not care
Provider sorry i am a bit confused ; please tell me again what you are looking for .

Seeker repeat
Provider what part of town do you have in mind?

Seeker address
Provider sure , it is on 100 mill road city centre

Seeker good bye
Provider good bye

Table 6: An imperfect example dialogue.


