@inproceedings{ramanarayanan-etal-2019-scoring,
title = "Scoring Interactional Aspects of Human-Machine Dialog for Language Learning and Assessment using Text Features",
author = "Ramanarayanan, Vikram and
Mulholland, Matthew and
Qian, Yao",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5913/",
doi = "10.18653/v1/W19-5913",
pages = "103--109",
abstract = "While there has been much work in the language learning and assessment literature on human and automated scoring of essays and short constructed responses, there is little to no work examining text features for scoring of dialog data, particularly interactional aspects thereof, to assess conversational proficiency over and above constructed response skills. Our work bridges this gap by investigating both human and automated approaches towards scoring human{--}machine text dialog in the context of a real-world language learning application. We collected conversational data of human learners interacting with a cloud-based standards-compliant dialog system, triple-scored these data along multiple dimensions of conversational proficiency, and then analyzed the performance trends. We further examined two different approaches to automated scoring of such data and show that these approaches are able to perform at or above par with human agreement for a majority of dimensions of the scoring rubric."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramanarayanan-etal-2019-scoring">
<titleInfo>
<title>Scoring Interactional Aspects of Human-Machine Dialog for Language Learning and Assessment using Text Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vikram</namePart>
<namePart type="family">Ramanarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Mulholland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While there has been much work in the language learning and assessment literature on human and automated scoring of essays and short constructed responses, there is little to no work examining text features for scoring of dialog data, particularly interactional aspects thereof, to assess conversational proficiency over and above constructed response skills. Our work bridges this gap by investigating both human and automated approaches towards scoring human–machine text dialog in the context of a real-world language learning application. We collected conversational data of human learners interacting with a cloud-based standards-compliant dialog system, triple-scored these data along multiple dimensions of conversational proficiency, and then analyzed the performance trends. We further examined two different approaches to automated scoring of such data and show that these approaches are able to perform at or above par with human agreement for a majority of dimensions of the scoring rubric.</abstract>
<identifier type="citekey">ramanarayanan-etal-2019-scoring</identifier>
<identifier type="doi">10.18653/v1/W19-5913</identifier>
<location>
<url>https://aclanthology.org/W19-5913/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>103</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scoring Interactional Aspects of Human-Machine Dialog for Language Learning and Assessment using Text Features
%A Ramanarayanan, Vikram
%A Mulholland, Matthew
%A Qian, Yao
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F ramanarayanan-etal-2019-scoring
%X While there has been much work in the language learning and assessment literature on human and automated scoring of essays and short constructed responses, there is little to no work examining text features for scoring of dialog data, particularly interactional aspects thereof, to assess conversational proficiency over and above constructed response skills. Our work bridges this gap by investigating both human and automated approaches towards scoring human–machine text dialog in the context of a real-world language learning application. We collected conversational data of human learners interacting with a cloud-based standards-compliant dialog system, triple-scored these data along multiple dimensions of conversational proficiency, and then analyzed the performance trends. We further examined two different approaches to automated scoring of such data and show that these approaches are able to perform at or above par with human agreement for a majority of dimensions of the scoring rubric.
%R 10.18653/v1/W19-5913
%U https://aclanthology.org/W19-5913/
%U https://doi.org/10.18653/v1/W19-5913
%P 103-109
Markdown (Informal)
[Scoring Interactional Aspects of Human-Machine Dialog for Language Learning and Assessment using Text Features](https://aclanthology.org/W19-5913/) (Ramanarayanan et al., SIGDIAL 2019)
ACL