@inproceedings{vanzo-etal-2019-hierarchical,
    title = "Hierarchical Multi-Task Natural Language Understanding for Cross-domain Conversational {AI}: {HERMIT} {NLU}",
    author = "Vanzo, Andrea  and
      Bastianelli, Emanuele  and
      Lemon, Oliver",
    editor = "Nakamura, Satoshi  and
      Gasic, Milica  and
      Zukerman, Ingrid  and
      Skantze, Gabriel  and
      Nakano, Mikio  and
      Papangelis, Alexandros  and
      Ultes, Stefan  and
      Yoshino, Koichiro",
    booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
    month = sep,
    year = "2019",
    address = "Stockholm, Sweden",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-5931/",
    doi = "10.18653/v1/W19-5931",
    pages = "254--263",
    abstract = "We present a new neural architecture for wide-coverage Natural Language Understanding in Spoken Dialogue Systems. We develop a hierarchical multi-task architecture, which delivers a multi-layer representation of sentence meaning (i.e., Dialogue Acts and Frame-like structures). The architecture is a hierarchy of self-attention mechanisms and BiLSTM encoders followed by CRF tagging layers. We describe a variety of experiments, showing that our approach obtains promising results on a dataset annotated with Dialogue Acts and Frame Semantics. Moreover, we demonstrate its applicability to a different, publicly available NLU dataset annotated with domain-specific intents and corresponding semantic roles, providing overall performance higher than state-of-the-art tools such as RASA, Dialogflow, LUIS, and Watson. For example, we show an average 4.45{\%} improvement in entity tagging F-score over Rasa, Dialogflow and LUIS."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanzo-etal-2019-hierarchical">
    <titleInfo>
        <title>Hierarchical Multi-Task Natural Language Understanding for Cross-domain Conversational AI: HERMIT NLU</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Andrea</namePart>
        <namePart type="family">Vanzo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Emanuele</namePart>
        <namePart type="family">Bastianelli</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Oliver</namePart>
        <namePart type="family">Lemon</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Satoshi</namePart>
            <namePart type="family">Nakamura</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Milica</namePart>
            <namePart type="family">Gasic</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ingrid</namePart>
            <namePart type="family">Zukerman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Gabriel</namePart>
            <namePart type="family">Skantze</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mikio</namePart>
            <namePart type="family">Nakano</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alexandros</namePart>
            <namePart type="family">Papangelis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Stefan</namePart>
            <namePart type="family">Ultes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Koichiro</namePart>
            <namePart type="family">Yoshino</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Stockholm, Sweden</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present a new neural architecture for wide-coverage Natural Language Understanding in Spoken Dialogue Systems. We develop a hierarchical multi-task architecture, which delivers a multi-layer representation of sentence meaning (i.e., Dialogue Acts and Frame-like structures). The architecture is a hierarchy of self-attention mechanisms and BiLSTM encoders followed by CRF tagging layers. We describe a variety of experiments, showing that our approach obtains promising results on a dataset annotated with Dialogue Acts and Frame Semantics. Moreover, we demonstrate its applicability to a different, publicly available NLU dataset annotated with domain-specific intents and corresponding semantic roles, providing overall performance higher than state-of-the-art tools such as RASA, Dialogflow, LUIS, and Watson. For example, we show an average 4.45% improvement in entity tagging F-score over Rasa, Dialogflow and LUIS.</abstract>
    <identifier type="citekey">vanzo-etal-2019-hierarchical</identifier>
    <identifier type="doi">10.18653/v1/W19-5931</identifier>
    <location>
        <url>https://aclanthology.org/W19-5931/</url>
    </location>
    <part>
        <date>2019-09</date>
        <extent unit="page">
            <start>254</start>
            <end>263</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchical Multi-Task Natural Language Understanding for Cross-domain Conversational AI: HERMIT NLU
%A Vanzo, Andrea
%A Bastianelli, Emanuele
%A Lemon, Oliver
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F vanzo-etal-2019-hierarchical
%X We present a new neural architecture for wide-coverage Natural Language Understanding in Spoken Dialogue Systems. We develop a hierarchical multi-task architecture, which delivers a multi-layer representation of sentence meaning (i.e., Dialogue Acts and Frame-like structures). The architecture is a hierarchy of self-attention mechanisms and BiLSTM encoders followed by CRF tagging layers. We describe a variety of experiments, showing that our approach obtains promising results on a dataset annotated with Dialogue Acts and Frame Semantics. Moreover, we demonstrate its applicability to a different, publicly available NLU dataset annotated with domain-specific intents and corresponding semantic roles, providing overall performance higher than state-of-the-art tools such as RASA, Dialogflow, LUIS, and Watson. For example, we show an average 4.45% improvement in entity tagging F-score over Rasa, Dialogflow and LUIS.
%R 10.18653/v1/W19-5931
%U https://aclanthology.org/W19-5931/
%U https://doi.org/10.18653/v1/W19-5931
%P 254-263
Markdown (Informal)
[Hierarchical Multi-Task Natural Language Understanding for Cross-domain Conversational AI: HERMIT NLU](https://aclanthology.org/W19-5931/) (Vanzo et al., SIGDIAL 2019)
ACL