@inproceedings{cohn-etal-2019-large,
title = "A Large-Scale User Study of an {A}lexa {P}rize Chatbot: Effect of {TTS} Dynamism on Perceived Quality of Social Dialog",
author = "Cohn, Michelle and
Chen, Chun-Yen and
Yu, Zhou",
editor = "Nakamura, Satoshi and
Gasic, Milica and
Zukerman, Ingrid and
Skantze, Gabriel and
Nakano, Mikio and
Papangelis, Alexandros and
Ultes, Stefan and
Yoshino, Koichiro",
booktitle = "Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue",
month = sep,
year = "2019",
address = "Stockholm, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5935/",
doi = "10.18653/v1/W19-5935",
pages = "293--306",
abstract = "This study tests the effect of cognitive-emotional expression in an Alexa text-to-speech (TTS) voice on users' experience with a social dialog system. We systematically introduced emotionally expressive interjections (e.g., {\textquotedblleft}Wow!{\textquotedblright}) and filler words (e.g., {\textquotedblleft}um{\textquotedblright}, {\textquotedblleft}mhmm{\textquotedblright}) in an Amazon Alexa Prize socialbot, Gunrock. We tested whether these TTS manipulations improved users' ratings of their conversation across thousands of real user interactions (n=5,527). Results showed that interjections and fillers each improved users' holistic ratings, an improvement that further increased if the system used both manipulations. A separate perception experiment corroborated the findings from the user study, with improved social ratings for conversations including interjections; however, no positive effect was observed for fillers, suggesting that the role of the rater in the conversation{---}as active participant or external listener{---}is an important factor in assessing social dialogs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cohn-etal-2019-large">
<titleInfo>
<title>A Large-Scale User Study of an Alexa Prize Chatbot: Effect of TTS Dynamism on Perceived Quality of Social Dialog</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chun-Yen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhou</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milica</namePart>
<namePart type="family">Gasic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingrid</namePart>
<namePart type="family">Zukerman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Stockholm, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study tests the effect of cognitive-emotional expression in an Alexa text-to-speech (TTS) voice on users’ experience with a social dialog system. We systematically introduced emotionally expressive interjections (e.g., “Wow!”) and filler words (e.g., “um”, “mhmm”) in an Amazon Alexa Prize socialbot, Gunrock. We tested whether these TTS manipulations improved users’ ratings of their conversation across thousands of real user interactions (n=5,527). Results showed that interjections and fillers each improved users’ holistic ratings, an improvement that further increased if the system used both manipulations. A separate perception experiment corroborated the findings from the user study, with improved social ratings for conversations including interjections; however, no positive effect was observed for fillers, suggesting that the role of the rater in the conversation—as active participant or external listener—is an important factor in assessing social dialogs.</abstract>
<identifier type="citekey">cohn-etal-2019-large</identifier>
<identifier type="doi">10.18653/v1/W19-5935</identifier>
<location>
<url>https://aclanthology.org/W19-5935/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>293</start>
<end>306</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Large-Scale User Study of an Alexa Prize Chatbot: Effect of TTS Dynamism on Perceived Quality of Social Dialog
%A Cohn, Michelle
%A Chen, Chun-Yen
%A Yu, Zhou
%Y Nakamura, Satoshi
%Y Gasic, Milica
%Y Zukerman, Ingrid
%Y Skantze, Gabriel
%Y Nakano, Mikio
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Yoshino, Koichiro
%S Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue
%D 2019
%8 September
%I Association for Computational Linguistics
%C Stockholm, Sweden
%F cohn-etal-2019-large
%X This study tests the effect of cognitive-emotional expression in an Alexa text-to-speech (TTS) voice on users’ experience with a social dialog system. We systematically introduced emotionally expressive interjections (e.g., “Wow!”) and filler words (e.g., “um”, “mhmm”) in an Amazon Alexa Prize socialbot, Gunrock. We tested whether these TTS manipulations improved users’ ratings of their conversation across thousands of real user interactions (n=5,527). Results showed that interjections and fillers each improved users’ holistic ratings, an improvement that further increased if the system used both manipulations. A separate perception experiment corroborated the findings from the user study, with improved social ratings for conversations including interjections; however, no positive effect was observed for fillers, suggesting that the role of the rater in the conversation—as active participant or external listener—is an important factor in assessing social dialogs.
%R 10.18653/v1/W19-5935
%U https://aclanthology.org/W19-5935/
%U https://doi.org/10.18653/v1/W19-5935
%P 293-306
Markdown (Informal)
[A Large-Scale User Study of an Alexa Prize Chatbot: Effect of TTS Dynamism on Perceived Quality of Social Dialog](https://aclanthology.org/W19-5935/) (Cohn et al., SIGDIAL 2019)
ACL