@inproceedings{ek-etal-2019-language,
title = "Language Modeling with Syntactic and Semantic Representation for Sentence Acceptability Predictions",
author = "Ek, Adam and
Bernardy, Jean-Philippe and
Lappin, Shalom",
editor = "Hartmann, Mareike and
Plank, Barbara",
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
month = sep # "–" # oct,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6108/",
pages = "76--85",
abstract = "In this paper, we investigate the effect of enhancing lexical embeddings in LSTM language models (LM) with syntactic and semantic representations. We evaluate the language models using perplexity, and we evaluate the performance of the models on the task of predicting human sentence acceptability judgments. We train LSTM language models on sentences automatically annotated with universal syntactic dependency roles (Nivre, 2016), dependency depth and universal semantic tags (Abzianidze et al., 2017) to predict sentence acceptability judgments. Our experiments indicate that syntactic tags lower perplexity, while semantic tags increase it. Our experiments also show that neither syntactic nor semantic tags improve the performance of LSTM language models on the task of predicting sentence acceptability judgments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ek-etal-2019-language">
<titleInfo>
<title>Language Modeling with Syntactic and Semantic Representation for Sentence Acceptability Predictions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Ek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Philippe</namePart>
<namePart type="family">Bernardy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shalom</namePart>
<namePart type="family">Lappin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-sep–oct</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Nordic Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we investigate the effect of enhancing lexical embeddings in LSTM language models (LM) with syntactic and semantic representations. We evaluate the language models using perplexity, and we evaluate the performance of the models on the task of predicting human sentence acceptability judgments. We train LSTM language models on sentences automatically annotated with universal syntactic dependency roles (Nivre, 2016), dependency depth and universal semantic tags (Abzianidze et al., 2017) to predict sentence acceptability judgments. Our experiments indicate that syntactic tags lower perplexity, while semantic tags increase it. Our experiments also show that neither syntactic nor semantic tags improve the performance of LSTM language models on the task of predicting sentence acceptability judgments.</abstract>
<identifier type="citekey">ek-etal-2019-language</identifier>
<location>
<url>https://aclanthology.org/W19-6108/</url>
</location>
<part>
<date>2019-sep–oct</date>
<extent unit="page">
<start>76</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Modeling with Syntactic and Semantic Representation for Sentence Acceptability Predictions
%A Ek, Adam
%A Bernardy, Jean-Philippe
%A Lappin, Shalom
%Y Hartmann, Mareike
%Y Plank, Barbara
%S Proceedings of the 22nd Nordic Conference on Computational Linguistics
%D 2019
%8 sep–oct
%I Linköping University Electronic Press
%C Turku, Finland
%F ek-etal-2019-language
%X In this paper, we investigate the effect of enhancing lexical embeddings in LSTM language models (LM) with syntactic and semantic representations. We evaluate the language models using perplexity, and we evaluate the performance of the models on the task of predicting human sentence acceptability judgments. We train LSTM language models on sentences automatically annotated with universal syntactic dependency roles (Nivre, 2016), dependency depth and universal semantic tags (Abzianidze et al., 2017) to predict sentence acceptability judgments. Our experiments indicate that syntactic tags lower perplexity, while semantic tags increase it. Our experiments also show that neither syntactic nor semantic tags improve the performance of LSTM language models on the task of predicting sentence acceptability judgments.
%U https://aclanthology.org/W19-6108/
%P 76-85
Markdown (Informal)
[Language Modeling with Syntactic and Semantic Representation for Sentence Acceptability Predictions](https://aclanthology.org/W19-6108/) (Ek et al., NoDaLiDa 2019)
ACL