@inproceedings{cordeiro-candito-2019-syntax,
title = "Syntax-based identification of light-verb constructions",
author = "Cordeiro, Silvio Ricardo and
Candito, Marie",
editor = "Hartmann, Mareike and
Plank, Barbara",
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
month = sep # "–" # oct,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6110/",
pages = "97--104",
abstract = "This paper analyzes results on light-verb construction identification from the PARSEME shared-task, distinguishing between simple cases that could be directly learned from training data from more complex cases that require an extra level of semantic processing. We propose a simple baseline that beats the state of the art for the simple cases, and couple it with another simple baseline to handle the complex cases. We additionally present two other classifiers based on a richer set of features, with results surpassing the state of the art by 8 percentage points."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cordeiro-candito-2019-syntax">
<titleInfo>
<title>Syntax-based identification of light-verb constructions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvio</namePart>
<namePart type="given">Ricardo</namePart>
<namePart type="family">Cordeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Candito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-sep–oct</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Nordic Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper analyzes results on light-verb construction identification from the PARSEME shared-task, distinguishing between simple cases that could be directly learned from training data from more complex cases that require an extra level of semantic processing. We propose a simple baseline that beats the state of the art for the simple cases, and couple it with another simple baseline to handle the complex cases. We additionally present two other classifiers based on a richer set of features, with results surpassing the state of the art by 8 percentage points.</abstract>
<identifier type="citekey">cordeiro-candito-2019-syntax</identifier>
<location>
<url>https://aclanthology.org/W19-6110/</url>
</location>
<part>
<date>2019-sep–oct</date>
<extent unit="page">
<start>97</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Syntax-based identification of light-verb constructions
%A Cordeiro, Silvio Ricardo
%A Candito, Marie
%Y Hartmann, Mareike
%Y Plank, Barbara
%S Proceedings of the 22nd Nordic Conference on Computational Linguistics
%D 2019
%8 sep–oct
%I Linköping University Electronic Press
%C Turku, Finland
%F cordeiro-candito-2019-syntax
%X This paper analyzes results on light-verb construction identification from the PARSEME shared-task, distinguishing between simple cases that could be directly learned from training data from more complex cases that require an extra level of semantic processing. We propose a simple baseline that beats the state of the art for the simple cases, and couple it with another simple baseline to handle the complex cases. We additionally present two other classifiers based on a richer set of features, with results surpassing the state of the art by 8 percentage points.
%U https://aclanthology.org/W19-6110/
%P 97-104
Markdown (Informal)
[Syntax-based identification of light-verb constructions](https://aclanthology.org/W19-6110/) (Cordeiro & Candito, NoDaLiDa 2019)
ACL