@inproceedings{persiani-hellstrom-2019-unsupervised,
title = "Unsupervised Inference of Object Affordance from Text Corpora",
author = {Persiani, Michele and
Hellstr{\"o}m, Thomas},
editor = "Hartmann, Mareike and
Plank, Barbara",
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
month = sep # "{--}" # oct,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6112",
pages = "115--120",
abstract = "Affordances denote actions that can be performed in the presence of different objects, or possibility of action in an environment. In robotic systems, affordances and actions may suffer from poor semantic generalization capabilities due to the high amount of required hand-crafted specifications. To alleviate this issue, we propose a method to mine for object-action pairs in free text corpora, successively training and evaluating different prediction models of affordance based on word embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="persiani-hellstrom-2019-unsupervised">
<titleInfo>
<title>Unsupervised Inference of Object Affordance from Text Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Persiani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Hellström</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-sep–oct</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Nordic Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Affordances denote actions that can be performed in the presence of different objects, or possibility of action in an environment. In robotic systems, affordances and actions may suffer from poor semantic generalization capabilities due to the high amount of required hand-crafted specifications. To alleviate this issue, we propose a method to mine for object-action pairs in free text corpora, successively training and evaluating different prediction models of affordance based on word embeddings.</abstract>
<identifier type="citekey">persiani-hellstrom-2019-unsupervised</identifier>
<location>
<url>https://aclanthology.org/W19-6112</url>
</location>
<part>
<date>2019-sep–oct</date>
<extent unit="page">
<start>115</start>
<end>120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Inference of Object Affordance from Text Corpora
%A Persiani, Michele
%A Hellström, Thomas
%Y Hartmann, Mareike
%Y Plank, Barbara
%S Proceedings of the 22nd Nordic Conference on Computational Linguistics
%D 2019
%8 sep–oct
%I Linköping University Electronic Press
%C Turku, Finland
%F persiani-hellstrom-2019-unsupervised
%X Affordances denote actions that can be performed in the presence of different objects, or possibility of action in an environment. In robotic systems, affordances and actions may suffer from poor semantic generalization capabilities due to the high amount of required hand-crafted specifications. To alleviate this issue, we propose a method to mine for object-action pairs in free text corpora, successively training and evaluating different prediction models of affordance based on word embeddings.
%U https://aclanthology.org/W19-6112
%P 115-120
Markdown (Informal)
[Unsupervised Inference of Object Affordance from Text Corpora](https://aclanthology.org/W19-6112) (Persiani & Hellström, NoDaLiDa 2019)
ACL